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SECTION I

INTRODUCTION

During the last few years numerical methods for predicting
the flow field around an airfoil have advanced tremendously. The

computation effort is, however, quite large; there may, therefore,

still be room for methods which yield results with acceptable

accuracy but with less computational work. This claim is made for

the integral equation method, originally proposed by Oswatitsch

(Ref. 1) and developed further by Spreitzer, Zierep, Norstrud, Hancock,

and Nixon (Ref. 2 through 9). The claim to shorter computing time

is made on the basis of numerical experiments. The following

observations, which probably have already been in the minds of the

originators can serve as an explanation. The integral equation

formulation contains terms which are found directly from the Prandtl

Glauert approximation and additional terms which originate from

further (nonlinear) compressibility effects. Frequently these

additional terms are fairly small; it may be permissible to

evaluate them with relaxed accuracy requirements.

The present article analyzes the method from a theoretical

point of view. The author's original goal was to identify the

feature of the method which is the basis for its success. The

explanation which he found is nothing more than a paraphrase in

mathematical terms of the reason just given; it has little practical

interest. Further developments of the underlying ideas, namely

the interpretation of the integral equation method as a method of

weighted residuals, may however lead to improvements of the

computational procedure and this should make the present study

worthwhile.

I
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SECTION II

GENERAL OBSERVATIONS AND A SURVEY OF THE ANALYSIS

The discussion is based on two fairly simply observations.

The first is the basic motivation for the definition of a Green's

function: the Green's function pertaining to some linear

differential operation (with appropriate homogeneous boundary

conditions) constitutes the kernel of an integral operator which

inverts the original differential operator. If one uses, instead

of the Green's function a tundamental solution, then one obtains

only a partial inversion of the differential operator, but one

still accomplishes a reduction of the dimensionalityof the problem

by one.

With the exact Green's function one knows, of course, the

solution of a given problem except for some quadratures. Let

us assume nevertheless that one carries out a method of weighted

residuals with the Green's function as weight function. Accordingly,

one assumes some form of the approximate solution which satisfies

the boundary conditions. It will depend upon a number (usually

very large) of unknown parameters. One then expressps the residuals

within the flow field in terms of these parameters and forms the

integral over the residuals weighted with the Green's function for

which the singular point lies at a certain value of (x,y). Applying

Green's formula to the integral over the whole field with the

point (x,y) excluded by a small circle, one finds that the solution

at the chosen point (x,y) is expressed solely in terms of the

prescribed boundary values. One thus finds the exact solution

for the point (x,y) in spite of the fact that the residuals in the

field do not vanish. The Green's function with a singular point

(x,y) therefore constitutes a weight function which makes the

solution at the point (x,y) insensitive to residuals within the

flow field. Incidentally, in a nonlinear problem one must

consider the differential operator which arises by linearizing

the original partial differential equation for the vicinity of a

certain approximation, the so called Frechet derivative. The

2



Green's function pertaining to the Frechet derivative makes the

result for a certain point (x,y) insensitive against first order

terms in the residual.

If only an approximation to the Green's function is avail-

able, then the residuals within the flow field will give a

contribution to the expression for the solution at the point (x,y).

This contribution is, of course, small if the approximation to

the Green's function is close and then it is permissible to evaluate

the effect of the residuals with reduced accuracy. Actually, this

interpretation is not much more than the argument put forth

above. An approximate Green's function is available only in

special cases (mainly flows which are symmetric with respect to the

x axis). Further work, namely the solution of an integral equation

is necessary, if only an approximate fundamental solution is

available, but the main effect of the use of such weight functions

is the same.

The present report studies a second observation in considerable

detail. We shall interpret the integral equation approach to

transonic flow as a method of weighted residuals in which the

weight functions are given by approximate fundamental solutions

(and in favorable cases by approximate Green's functions). Each

choice of the singular point (x,y) in the Green's function gives

one weight function. In methods of weighted residuals one has

considerable freedom in the choice of weight functions. One can

therefore replace some of the weight functions which are used

in the integral equation method, by weight functions of a

different character. This makes it possible to combine the

integral equation method with finite element or finite difference

approaches. This is advisable in regions where the available

approximation to the ideal fundamental solution is poor.

One thus is led to alternative versions of Nixon's extended

integral equation method and, in a further extension, to an

improvement in the far field conditions for the lower transonic

range. This last development ought to prove useful even in con-

junction with conventional finite differences approaches, for

3



it makes possilile a reduction of the size of the portion of the

flow field in which the computation is carried out.

Section III of the report is a compilation of different

formulations of the problem in terms of differential equations.

Section IV is an overview of different integral equation formula-

tions. This seems to be desirable not only because we look at

the method in a different light, but also because most publications

treat the theoretical side rather briefly since they are mainly

oriented torwards the numerical aspects. One question is particularly

intriguing: does the integral equation method fully express the

shock conditions, or it is necessary to express part of the shock

conditions separately. Here physical intuition cannot be considered

as a reliable guide because of the global character of the integral

equation formulation. One may, of course, resort to numerical

experimentation, and this has been done in the past. But even for

those who are primarily oriented toward the computational practice,

the present analysis may provide reassuring background information.

Only the important results are compiled in Section IV. Details

are found in a number of appendices. To someone well versed in

the mathematical techniques used in this context, a more condensed

version would probably be sufficient, but, at least some of the

details are desirable if one wants to show the subtle differences

in the assumptions and in the arguments between different

formulations.

Section V considers the conditions that are to be imposed

at the transition from a subsonic to a supersonic flow at the

sonic line. In principle the condition to be satisfied has local

character and the global character of the integral equation

formulation is not too well-suited for this purpose. An

ingenious device has been introduced by Spreiter, which allows

one to overcome this difficulty; its mathematical meaning will

be explored. The modifications of the method which are discussed

in the subsequent sections will probably make the use of this

device unnecessary, but it is of interest to see why it works.

4



Section VI describes the original form of the integral

equation method,the extension proposed by Nixon, and the modifi-

cations suggested by the present interpretation. Section VII

examines the relation between the integral equation formulation

and the far field conditions.

The present report does not claim to give a complete survey

of the integral equation method. Finer points, the extension

to three dimensional problems, and to problems in which small

harmonic oscillations are superimposed to a steady field will

not be treated. To carry over the ideas of the present report

to problems of this kind is not difficult. In the practical

realization of the modification suggested here, experiences gained

in the past with the integral equation method ought to prove

useful.

5



SECTION III

PARTIAL DIFFERENTIAL EQUATIONS AND SHOCK CONDITIONS

The investigation starts with the potential equation

simplified for transonic flow:

(1 - M2  K-)T-- +T- ox x x yy

where x and y are Cartesian coordinates, 7 the velocity potential,

M the free stream Mach number, and K a constant which arises by a

development of 1 - ( /a2) for the vicinity of the free stream

Mach number; a is the free stream sound velocity. For a free stream

Mach number one, K is equal to (y+ 1) where y is the ratio of the

specific heats. The equation is brought into a standard form by

means of the Prandtl Glauert coordinate distortion

2 1/2-
y =(- M) y (2)

x x

and by setting

= K(1 - M 2) (3)

One obtains

(i - .x)qxx + yy=0 (4)
( x xx yy(4

or

- 2
Lx x 2) + yy . (5)

Eq. (4) shows that sonic speed occurs for x = i.

In simplifying the shock conditions for transonic flow, one

retains the requirement that the momentum equation for the

direction tangential to the shock be satisfied. This requires

that the potential be continuous as one traverses the shock.

6



The energy equation is always satisfied if one computes

the pressures from the Bernoulli equation. In addition, the

requirement of conservation of mass is retained. It finds its

expression in the potential equation. If one postulates that

across the shock, the potential equation :s satisfied in the

weak sense, then conservation of mass is guaranteed. This holds,

of course, for Eq. (5) as well as for the original potentialequation,

Eq. (1). A fourth shock condition, preservation of momentum in

the direction normal to the shock, must be waved if one works

with a flow potential. The errors so introduced are of third

order in the shock intensity (expressed, for instance, by the

jump of the Mach number across the shock). This is in keeping

with the approximation made in Eq. (1).

A method of weiqhted residuals amounts to the use of the

concept of weak equality. The shock conditions,therefore,appear

automatically, if one solves the potential equation by a method

of weighted residuals. A derivation of the shock conditions using

the concept of generalized functions (for which the concept of

weak equality plays a fundamental role) is shown in Appendix 1.

We quote the result in the following.

Let the shock be given by

x = x (y)

and let [H] + the jump of some quantity, H, across the shock from

the upstream to the downstream side

[HI+ = H(x s(Y) - ,Y) - H(x s(Y) + ,Y) (6)

r > 0, c - 0.

Let 3 be the angle of the normal to the shock with the x-axis.

One has

dx
S -tg (7)

7



Conservation of mass and continuity of t across the shock are expressed

by 2 + dx

x 2 ] - [- - - dy - 0 (8)

and

= 0. (9)

An equivalent formulation is obtained by introducing

x u (10)

y V.

(The actual velocity components can be obtained from u and v by

the transformations Eqs. (2) and (3).)

Then one has

u = v (1)
y x

and from Eq. (5)

2
u

I (u - ) + v= 0. (12)

The shock condition (8) then assumes the form

[u - (1/2)u 2]+ - [v1+(dxs/dy) = 0. (13)

An expression equivalent to Eq. (9), but in terms of u and v is

obtained by differentiating Eq. (9) along the shock

+ (14)
[ul-(dxs/dy) + [v] + = 0.

One might be tempted to derive Eq. (14) from Eq. (11) by means

of the concept of weak equality, but Eq. (11) is not the expression

for the conservation of some physical quantity, although it has

divergence form. Such a procedure would therefore not be physically

justified, althouqh it gives the correct result.

8



A formulation of the problem solely in terms of u, which

has originally been used in the integral equation method, is

obtained by differentiating Eq. (5) with respect to x. One obtains

2 u2 32
2 (U - ) + 2 u = 0. (15)

In the approximation used in all of these derivations, the

boundary conditions at the profile are transferred to the x axis.

Along the upper and lower side of the profile the values of v are

then given by the profile shape. In the formulation in terms of u

the values of uy = v x are known at the profile.

The shock conditions (13) are expressed solely in terms of

u by using Eq. (14). Using, in addition, Eq. (7) one obtains

]+ u2 + 2
fu] _- [f] c s2  = 0. (16)

To express Eq. (14) solely in terms of u, we differentiate

it along the shock with respect to y. This means we apply the

operator

dx
ay dy 3x

One obtains
2

+ dx + + + dx 2  + d 2 + +
[uy -l + [u] (-)2+[u] dy2 +- Iv]

dy2

+ IV + s =0

Here Eqs. (11) and (12) are used to eliminate v. One obtains

dx dx 2 2 + 0x(
2 2uu]+ s l - _) - + [u] 0. (17)

I...y d x dy

9



Eq. (16) and (17) give the complete formulation of the shock

conditions. In practice one will probably avoid the formulation

solely in terms of u because of the complexity of the shock

condition, (Eq. 17).

If a u-field satisfying Eq. (15) (but not necessarily Eqs.

(16) and (17)) is known, then one can always construct a v-field

by the use of Eq. (11) and Eq. (12). One determines, along some

initial line x = const which intersects all lines y = const, the

velocity component v from Eq. (11) by an integration with respect

to y. It is best to choose this line at x = - ,. There, all

derivatives of u are zero, and therefore v = 0. One then determines

v by integrating Eq. (11) along lines y = const. This construction

cannot reach points which lie downstream of the shock. For these

points one must again use Eq. (12), along a line x = + to obtain

initial conditions for v. Again, one obtains v = 0. (Actually

some discussion of the behavior of u at large values of y isy
needed to arrive at this result.)

The differential equation in terms of u, Eq. (15), arises

frow the equation for conservation of mass by a differentiation

with respect to x. Conservation of mass is therefore guaranteed

only if conservation of mass is satisfied along some initial line.

The construction of the v-field described here imposes this require-

ment and in this manner legitimizes the use of Eq. (15). Whenever

a u-field has been computed, one can assume that the pertinent

v-field is available.

10



SECTION IV

INTEGRAL EQUATION FORMULATIONS

In the following discussions a weight function denoted by

41 will be used. The following expression has been chosen:

(E-x, n -y) = (1/2) log( (-x)2 + (n-y)). (18)

The umbral variables operating in future integral expressions are

the variables and n which appear in this equation. They

correspond to x and y. Each choice of the point (x,y) defines

one weight function. The weight functions satisfy

2,2
+ 2  0 (19)

22

except at the point (<,n) (x,y). These weight functions may
appear unconventional because they change sign at (.I,- x) 2 +2

(T-y) = 1 and because they tend to infinity if the argument is

zero or infinite. Actually, any weight function w(F,n) can be

written as

w(,)- ' I - n)dtidnl (20)

where A denotes the Laplace operator and and q are umbral

variables of integration. This is seen by a standard application

of Green's theorem to the equation

Aw(ln I ) =f(1,rl

One forms

ffAw(loln) 1(I nl-n)dVldnl =ff(( 1 , n)P(l- i',l-n)dtldnl"

Assuming that w and its first derivative vanish outside of a

certain region, one obtains for the left hand side 2iw(t,n).

11



This leads directly to Eq. (20). The set of weight functions

is therefore equivalent to conventional weight functions of

finite support (such weight functions are different from zero

only in a finite region).

We now substitute some function (again denoted by ) into

the potential Equation (5). If the differential equation is not

satisfied, then one obtains a residual. We evaluate the integral

over the residual weighted with the function qj. The resulting

expression is denoted by Q(x,y). The arguments (x,y) in Q

refer to the same arguments in q1. The independent variables

x and y in Eq. (5) are replaced by and n. Accordingly, we

form

Q(x,y) ( - )) + ( )] ( -x,n-y)ddn. (21)

After certain transformations which are shown in detail in

Appendix II, one obtains:

L

Q(x,y) = 2Tr(x,y) - f ( -x,-y) ( ( £+0)- (6,- 0))do1 (22)

+ f ,( Jx,-y) (p($,+0)-,(U,-0))d +(i/2)ff'p(t-x,-y)q (,f)dEdi 100

Here, Q denotes the entire E,p plane punctured at the point (tn)
= (x,y). The profile extends along the x axis from x = 0 to x L.

It appears as a cut in the F,n plane. In the presence of a

circulation (denoted by Y) the cut is extended along the wake

(again represented by the x axis). The arguments + 0 and - 0

refer to the limiting values assumed by n as one approaches the

cut.

Eq. (22) does not contain explicit contributions due to the

shock; the shock conditions are included by the use of the concept of

weak equality which is inherent in a weighted residual formulation.

A failure to satisfy the shock conditions registers in the expression

12



Q in the same manner as a failure to satisfy, in a certain region,

the partial differential Eq. (5). If one chooses to exclude the

shock from the regionQ2 by a cut, then the first expression is

modified in the following manner. We denote by Q' the region Q

cut along the shock and by Q' the pertinent function Q. The

region Q2'has the two borders of the cut as part of its boundary.

Then

Q' (x,y) = Q(x,y) + f,(s h)_x, ny) { (n) ,n r) I _ [i, U(s W , ]+

s +-VP ( V (nj), ni -(dls /dTI) dri (23)

-f [(VP V(n), _J f4F(Is()-xn-y)- 1( s (n)-x,n-y) (Qs/dn) }dn.

The integrals are extended along the shocks in the positive n-

direction. The second integral vanishes if is continuous

along the cut. The first integral vanishes if the shock con-

ditions Eq. (8) are satisfied. In principle, continuity of the

potential and conservation of mass are separate postulates, if

the shock is excluded by a cut.

In a symmetric flow pattern, one has

U,+ = (-,-O an , IU +0) = 1 F,( -0)
P(i,+0) (Ij,-0) and (,,+)=-q(,

and the second integral in Eq. (20) vanishes. t at the

profile is given in any case by the boundary conditions. Re-

writing Eq. (22) one then obtains

L
Q(x,y) 2 ii(x,y) -2 q ,,-x,-y) (,+0)dr

0 (24)

+ (1/2) ffp,_(-x, n-y)(,nd ,dn.

The same equation is obtained for a symmetric flow if one con-

siders only the upper half plane and uses instead of q, the Green's

function (whose n derivative vanishes at the axis)

13



1
,-x, n-y) (- , n+y)).

Eq. (24) is particulrly simple because the u't nown function

appears only in the double integral.

In the usual integral equation method the direct use of

the velocity components u = x and v = y is preferred. This

is convenient because u and v are of direct physical interest.

These equations are obtained by differentiating Eq. (22) with

respect to x and y. Details are shown in Appendix III Eqs. (A18)

and (A19). One obtains:

L
Qx (x,y) = 2ru(x,y) + f (v',+O)-v(,.,-O))i,,(-x,-y)d,

0
L

+ f (u( ,+0)-u(F,-0))y (F-x,-y)d< (25)
0

- (F/2) u2 (x ,y) -1/2 ffu 2 (F , )W F- x, n-y) d~dr

L
Q (x,y) 2-Tv(x,y) + f (v( ,+O)-v( ,-0)iq(J-x,-y)d

1 0

L
- f(u,,+0)-u(i,-0)) r(-x,-y)d, (26)0

-(1/2) ff u2(F ,n) .(-x,q-y)d~dn.

Here, as before, i refers to the 1,n plane punctured at the point

(T,rj) (x,y). The first integral on the right in each of these
expressions is known because v is given as boundary condition.
The second integrals do not extend over the wake. The last terms

arise by differentiation of the double integral with respect to

x or If one omits these terms then one obtains the integral

equations of the linearized problem; and, for the symmetric flow,

even its solution. The terms and 'q which occur in the

double integralare singular at (F,n)= (x,y). One cannot tell in

advance how significant the double integral is in comparison to the

14
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terms (,i/2)u 2 (x,y). Nixon has found by numerical experimentation

that a useful starting approximation for an iterative solution is

obtained by omitting the double integral.

In a method of weighted residuals based on Eq. (21), one

postulates that the expression Q(x,y) vanishes for all weight

functions (this means for all values of x and y). In a method of

weighted residuals based on Eq. (25), one postulates

that Qx vanish for all values of x and y. At the end of Appendix

II it is shown that Q is continuous at the shock. Equivalence

between the formulations (Eqs. (23)and (25)) is therefore obtained

if Q = 0 along some initial line which intersects all lines y =

constant, for instance a line at x = - ,. In this argument Eq.

(26) does not play a role. In practical computations Eq. (26)

may well be useful for the determination of the v field, but in

theory the irrotationality condition vx = u y serves equally

well.

Eq. (25) can be derived from a number of different (although

related) postulates. The flexibility in viewing the problems so

obtained may sometimes be useful. In Appendix IV it is shown

that Eq. (25) constitutes the weighted residual expression (not

only the x derivative of such an expression) if one applies the

weight function -4 to the potential equation.

Appendix V uses the formulation of the problem in terms of

the velocity components u and v. It is shown that the expression

(25) is obtained by applying the weight function -, to the

equation of conservation of mass, Eq. (12).

Appendix VI shows that Eq. (25) is obtained by applying the

weight function J, to the formulation of the problem in terms of

u, Eq. (15). These results are not unexpected. However, the

manipulations bywhich they are substantiated are not entirely

straightforward.

Eq. (25) gives the integral equation formulation solely in

terms of u and v. There is, however, a conceptual difficulty.

In deriving this equation one has assumed that u and v are partial

15



derivatives of a potential. The existence of a potential is

guaranteed if one constructs the v field pertaining to a given u

field in the manner shown in Section III, for this construction

is based on the irrotationality condition uy vx. The continuity

of the potential at the shock is expressed by the jump condition

Eq. (14). The other condition to be observed at a shock is con-

servation of mass, expressed by Eq. (13). One will ask whether

the integral equation formulation derived from Eq. (25) encompasses

these two conditions. One might be inclined to dismiss this

question by the observation that a serious error in the formulation

of the problem as the omission of a shock condition would have

been discovered during many practical applications made with the

method. The theoretical answer is given at the end of Appendix V.

The two shock conditions are indeed satisfied, provided that the

expression Eq. (25) vanishes for all values of x and y.

Appendix VII gives even more specific information. It shows

that the shock condition, Eq. (13), which expresses conservation

of mass is already satisfiedif Q vanishes for points (x,y)

immediately upstream and downstream of the shock. For points

(x,y) for which Eq. (26) is satisfied immediately upstream and

downstream of the shock, one finds that a certain linear com-

bination of the shock condition, Eqs. (13) and (14) is satisfied.

These results are not restricted to normal shocks.

There is no need to introduce separately shock conditions

if one uses Eq. (25). To the contrary, if one would express the

shock condition a second time by an independent postulate one

might introduce ill conditioning into the formulation of the

problem, because in the discretization which is always needed in

practical work, one may inadvertently express the same conditions

in two forms which are not completely identical.

The procedure proposed by Nixon in Ref. 6 might lead to this
difficulty. The condition Eq. (29c) in this reference is a con-
sequence of conditions Eq. (29a) and (29b) and can therefore not
be used. In a later publication, Ref. ( 8 ), an equation corresponding
to Eg. (29c) does not appear.

16



SECTION V

CONDITIONS AT THE SONIC LINE

In nearly all approaches to transonic flow (finite differences,

finite elements, integral equations methods) one uses, implicitly

or explicitly, the concept of weak equality. It is possible that

expressions which solve a partial differential equation in the

weak sense, fail to satisfy it pointwise. In the transonic

case, solutions containing an expansion shock in addition to a

compression shock thus become possible. One must introduce into the

numerical approach the requirement that expansion shocks are not

admitted. If one has an approximation to the flow field with a

smooth transition from subsonic to supersonic flow and one studies

perturbations to such a solution, then one finds that there are

particular solutions which contain at the transition point, a

logarithmic singularity. Only in the weak sense can expressions

with such a singularity be regarded as solutions. Physically such

perturbations are not admissible. One must impose the condition

that at the sonic line the partial differential equation is

satisfied in the strong sense. In the two-dimensional case this

is simply expressed by the requirement that

Qyy = 0. (27)

It is shown in Ref.l] that the sonic operator used in the Murman

Cole procedure can be interpreted in this manner.

In the framework of the integral equation formulation, the

condition of a smooth transition through the sonic line is

expressed in very ingenious but a rather indirect manner which

has been introduced by Spreiter (Ref.2). In all integral equation

methods one postulates, of course, that the weighted residual

expression (25) be zero. This expression is written in the form

2
u - u /2 R

or
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u - 2u = -2R. (28)

This is a quadratic equation in which the right hand side contains

the unknown function u. In the iteration procedure used to solve

this problem the right hand side is evaluated from the preceding

iteration step. Solving this quadratic equation, one obtains

u = 1 ± /1l-j2. (29)

We mentioned before that at the sonic line u 1. Therefore, one

must have

R = 1/2.

Besides, in order for u to be real upstream and downstream of the

sonic line, R must have a maximum at the sonic point. One therefore

has

1R/,x = 0.

(In the subsonic region one then uses the lower, in the supersonic

region the upper sign in Ea. (29)).

If the maximum of R is smaller than 1/2, then U will

never reach the value 1, and the transition from a subsonic to

a supersonic flow can occur only in the form of an expansion

shock. This formulation expresses indeed the requirement that u

reaches the value 1 as one approaches the supersonic region from

the subsonic side upstream.

In an iteration process there is always some arbitrariness

regarding the terms relegated to the right hand side. The form

of Eq. (25) might suggest that one uses (instead of Eq.(28)), an

equation of the form

u - u/4 = R.

18



Then

u = 2 <-4R

Here one finds that R must have a maximum at 1 in order for u to

pass smoothly through the value 2 along a line y = constant. Of

course, such a postulate is without interest, but one sees that

only for a special choice of the iteration procedure will Eq. (28)

yield conditions for the sonic line.

Spreiter and Oswatitsch, and Zierep and Nixon have devised

workable procedures to incorporate this condition into the

integral equation method. Yet, it has a somewhat artificial

character; a combination of the integral equation method with

finite difference or elements methods which becomes possible, if

one regards the finite element method as one of weighted residuals,

can lead to a more direct expression of the conditions at the

sonic line, based on Eq. (27).

Nixon in Ref. 8 has given a formulation similar to Eq. (28)

for the vicinity of the shock. Dividing Eq. (16) by [u] + , one

finds

+ -
u+u 22 cos 1

+

where we write temporarily that u and u for the values of u,

respectively, upstream and downstream of the shock. For the normal

shock (2= 0) this amounts to an approximation to the Prandtl

relation

w+w :a*
2

+
where w and w denote the velocity upstream and downstream of the

shock and a* is the sonic velocity. It follows that in a

formulation of Eq. (25) in the form

2, 2
u- ((cos23)/2) u = R.
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R is continuous through the shock and the values of u obtained in

each iteration step by solving this quadratic equation are

connected by the proper shock relations.
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SECTION VI

THE INTEGRAL EQUATION METHODS AND SOME EXTENSIONS

So far we have discussed expressions for weighted residuals

formed with the weight functions .. If one has an expression for

(or for u and v) for which the original differential equation

and the shock conditions are satisfied, then the weighted residuals

Q (or Q ) will vanish for all values of (x,y). One will remember

that (x,y) are the parameters which characterize the individual

weight functions. In practice the condition Q = 0 (Eq. (25))x

will be imposed only at selected lines or selected points of the

flow field. One can hope that the desired technical information

(the pressure distribution over the profile) can be obtained by

the use of a relatively small number of values (x,y), because the

weight functions used here (approximate fundamental solutions)

have the property of making the expressi s Qx fairly insensitive

against errors in the residual.

In the original form of the integral equation method the

condition Qx = 0 was imposed only for points of the profile, or

perhaps points of the profile and some points of the x axis up-

stream and downstream. The expression Qx Eq. (25) contains,

besides local terms and expressions which can be computed from

the boundary conditions, a double integral which contains values

of u from the flow field. This is the only term in which a

failure to satisfy the differential equation or the shock conditions

appears. The valuesof u which occur in this double integral are

now approximated in terms of the values of u at the x axis. Here

one uses, besides the values of u, the values of u given at the

profile by the boundary conditions, and, if one wants to have a

better approximation, the fact that at the x axis (as everywhere

else) the differential equation for u must be satisfied. The

expressions which one chooses must vanish sufficiently quickly

as one goes te infinity. From a practical point of view one

prefers to chcose formulae for u for which one of the integrations

needed in the double integral can be carried out analytically.
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Ultimately the double integral is reduced to a single

integral which contains as unknowns,only the values of u at the

points of the x axis under consideration. Substituting these

epxressions into Eq. (25) and for unsymmetric problems also in

Eq. (26) one obtains one or two integral equations, which are

subsequently solved by iteration. Under favorable circumstances

the contribution of the double integral is small and one obtains

in this manner results for the pressure distribution over the

profile which are of sufficient accuracy for technical purposes.

A very attractive feature of this formulation lies in the

fact that the possibility of the occurrence of shocks (in this

approximation normal shocks) is put into evidence, if one solves

Eq. (25) formally as a quadratic equation.

In cases with an embedded supersonic region u is definitely not

small. At the sonic line one has for instance u = 1. A more

accurate determination of u is therefore desirable. One can, for

instance introduce for u(x,y) within the field expression which

satisfy at x = 0 the partial differential equation for u and also

the first few of the derivatives of the differential equation with

respect to y. This procedure is limited by the complexi-y of

the expressions for u obtained in this manner.

To rtchieve a more accurate determination of u, Nixon and

Hancock impose the condition QX = 0 not only along the x axis

but also along some lines y = constant within the field, and thus

obtain a considerable improvement of the method.

According to the interpretation given in the present report,

one then uses weight functions y pertaining to inner points

(x,y) of the flow field. The author believes that other weight

functions may serve equally well, if not better. To obtain good

results for the pressure distribution at the profile by the

extended integral equation method it is, of course, necessary that

the residuals at points close to the profile be small. The weight

functions take into account residuals throughout the flow field,
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the local residual at a point close to the profile may fail to

vanish although Qx = 0 at the point (x,y) under consideration.

For points in the vicinity of the profile where u is not small,

the use of a localized weight function therefore appears to be

preferable to t.e conditions obtained from the integral equation

formulation. Following this idea one uses finite difference or

fini.e element formulations for a region which extends somewhat

beyond the supersonic region.

Such a procedure has one additional advantage. The

expressions Qx contain contributions from all points of the flow

field at which u is to be determined. In contrast, a finite

difference formulation connects the value of u at a certain point

(x,y) only with values at neighboring points. For numerical

purposes this is a significant simplification.

One thus arrives at a hybrid procedure. For those parts of

the flow field where u is small, one may take advantage of the fact,

that the use of weight functions yields equations in which a

dominant portion is directly expressed by linear theory, and the

remaining nonlocal (and nonlinear) terms are small. For these

expressions it may suffice if one describes the values of u which

appear in these correction terms by means of a very small number

of points (x,y) within the flow field. In the portion of the flow

field where u is not small, one uses a finite difference or a finite

element procedure. In this region one may even replace the simpli-

fied potential equation (Eq. 1) by a full potential equation.

Accordingly, we divide the flow field into an inner region

in which we use a finite difference and a finite element procedure,

and an outer region in which one uses the integral equation

formulation (Figure 10). The inner region extends beyond the

embedded supersonic region, but still it may be fairly small. The

boundary of the region in which the integral equation formulation

is applied is no longer confined to the x axis along this boundary,

the values of v as well as the values of u are unknown. The

derivations shown in the Appendix include cases of this kind. One

obtains the following expression, Eq. (.17):
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I2
Q (x,y) 2n(u(x,y)-(l/4)u 2(x,y) + f v ( (.d + i/d)

- (u-(l/2)u2) dri - u dr (30)

- (1/2 ,.u 2dr d = 0

Here the region,,) is the part of the flow field in which

the integral equation formulation is applied, punctured at the

point (x,y). If (x,y) is a point of the contour of the region

in which this formulation is applied, then one must carry out

a limiting process particularly in the second integral over '2.

The result is found in Eq. (A48). It is Probably practical not to

consider the boundary 'ii in Figure 11 as a line which separates

different regions of the flow field and for which a matching of

the solutions must be carried out, but rather as a line which

separates regions in which the residuals are weighted in a different

fashion. For points of this boundary one may apply either the

weighting of the residuals by means of the integral equation

method (in this case one would apply Eq. (A48) or one may use the

weighting applied in finite difference methods. Practical

experience must show which procedure is more practical. One has

the choice of including in the integral equation formulation the

residuals that are due to the inner region (they are presumably

small because one postulates that their local averages be zero);

then the boundary between the two regions does not appear in the

formulae, and the region y covers the entire flow field. Alter-

natively one can define to be only the outer region. The latter

form is probably preferable.

Because of the nonlinearity of the problem iterations cannot

be avoided. But even in extensions of the method where one deals

with linear equations one will probably use iterative procedures in

the outer region because the number of unknowns is fairly large and

the matrices which appear are not sparse. It can be expected

that such iterations converge well. In the inner region one will

also use iterations (for instance the Murman Cole iteration) at

least in the initial stages of the procedure. After an initial
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approximation has been attained one might think of a Newton

procedure, in which the individual linear equations are solved by

direct elimination. So far these important practical aspects have

not been explored.
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SECTION VII

INTEGRAL EQUATION FORMULATION AND FAR FIELD CONDITIONS

In practice the field for which a numerical procedure is

actually carried out is finite. The effect of the field outside

of its boundaries can be approximately taken into account by

means of the integral equation formulation. For this purpose it

is, of course, necessary to express the values of u in the distant

field (that is outside of the boundaries of the computed field)

in terms of the value of and or alternatively of u and v,

at this boundary. The situation is analogous to that encountered

in the original integral equation method, except that in the

distant field the values of u are smaller and therefore the

approximation is less critical. Of course, in this case the

values of n are not known in advance. If one chooses to use

finite difference or finite element methods throughout the

computed part of the flow field, then the integral equation

formulation serves solely to formulate far field conditions.

In deriving the usual far field conditions one assumes

that in the distant field the linearized potential equation is

satisfied. In the formulation arising from the integral equation

formulation also nonlinear terms in the flow differential

equation for the distant field are taken into account. This is

an improvement which ought to make it possible to reduce the size

of the portion of the field in which the actual computations are

carried out.

Source terms appear also in Klunker's formulation of the

far field conditions (Ref. 12), but these sources lie within the

computed parts of the flow field, while in the distant field

it is assumed that the linearized potential equation is sufficiently

accurate.

A first formulation of the far field condition is obtained

from Eq. (A6). Here % is the distant field and 3S72 its inner2J
contour. This equation is evaluated for t = 1. We quote:
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.Xnp(x,y) + " P((.-x,r-y) [P (F,n)dri - p (,q)d]

- , (,) (', (E-x,n-y)dn - (F-x,n-y)d](

- (Tn - 0(x-L l y)

-(1/2) If (,p(,-x,n-y) 2( 2( ,r)dFdn = 0

Provided that one has an ipproximation for the double integral

one obtains a global relation between and its normal derivative

along Q2" The expression contains a term due to the circulation.

A form which comes closer to the far field conditions

derived (for more general problems) in Ref. 13, is obtained

if one chooses the point (x,y) inside of the boundary DC)2 ' One

then must set = 0 in the last equation. The expression so

obtained agrees with Eq. (39) of Ref.13 except for the con-

tributions of the nonlinear terms in the distant field Q, and

of the circulation. The latter term is missing because the author

considers in this reference the potential after --he contribution

of the circulation has been subtracted.

To obtain, in the notation of the present article, an expression

where @ denotes the potential with the circulation included, one

writes Eq. (39) of Ref. 13 in the form

( {(-,n) - 1'[(1/2) - ((j U. , ) /2T) I} {(- (,-x, n-y)d

2
+4, (F,-,n--y)dI;}- f/j(F-x,n-y) {- pU( ,n) - T[(I/2)

i 2

- (U ,n )/ 21T] ]d n + [ ( 'n) - r[ ( / 2 ) - [ (F, n)/2 T ] ]d } 0

Hence,
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TO(,q [ ¢ (F-x,q-y)dnl + i CI-x, T-y) dF]

3 2

- F-x,1-y) [-, (.,n)dn + T1(r,) d

(32)

-f{ f ((1/2) - (nC(,f)/2i))F( -x, n-y)dn +( y(-x,n-y)dC]

3 2

2

-f 41-x~-y [-y-(1/2)-(0( n) /2rF))dF

+ T ((1/2) - (0( ,n)/2Tr))d ]}= 0

Now one observes that @( ,p) as well as )(-x,n-y) satisfies

Laplace's equation in the region Q . (One will remember that

the singular point (x,y) lies outside of the region Q.) The two

integrals with the factor P extended over the whole contour .Q

therefore give zero. This contour consists of the large circle

I , the contour separating the distant field from the computed

part of the flow field ..2 ' and the two borders of a cut along

the x axis )i3 It is shown in Appendix II that the integral

vanishes. One therefore has

f -f 3I
D Q 32 D O 3

Most terms in the integrands vanish, since 23 extends along the

x axis; one obtains

+ F f [(1/2)- (0 (,T)/2P) (F-x,P-y)dr F f (-x,n-y)dr
'3 L1

3 1
= -r(T- 0(x-Ll,Y))

Hence, from Eq. (32)
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- / (I-X, -y) ,r( n)dn + ,r)(F,-x,n-y)d.] (33)
2

f'(- 0 (x - LlY)) 0.

This is Eq. (A6) for . = 0 but without the source terms.

Source terms in the Laplace equation can be included also in

the procedure of Ref. 13. One may do this by inspection, or

by the following rationale. One divides the distant field into

a very distant field in which no source terms are presented and in

a moderately distant field in which sources play a role (Fig.ll)

The inner boundary of the very distant field consists of a portion

denoted by 36 and a cut along the x axis extending from L2 to

infinity. Eq. (33) holds along DQ6 'rather than 72) which is,

of course, the outer boundary of thQ moderately distant field.

Now one applies Green's theorem to Eq. (5) with the weight function

P(i-x,n-y); (x,y) outside the very distant and moderately distant

fields. Using Eq. (33), one arrives at an expression in which

only the contribution of 3 2 occurs. This is Eq. (31) with Q= 0.

If one solves for the inner field iteratively, by means of

a Murman Cole iteration, say, then one needs local rather than

global boundary conditions along DS2 . To obtain such conditions
we follow the argument used in Ref. 13.

Assume that we possess in the distant field a solution of

xx + 0yy - q(x,y) = 0

where as always

q = (1/2) 2

We define an extension of this distant field throughout the

inner field which satisfies t + = 0. (Because of the
xx yy
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presence of the circulation one needs a cut along the x axis

also in the inner field.) The values of c match at the boundary

between the inner and the outer field. There will be a jump of

the normal derivative at the boundary between the two fields. This

jump can be represented by a source distribution with the unknown

intensity f(s) (or f(k)) where s (or o) measures the distance

along the boundary line. One thus obtains

,(x,y) = (2 fs)- { / fko) ( c( ) -x, n(o)-y) do
') k (34)

+ ?.q(S, r) U -x, n-y)d'dn}PF((1,'2)- 0 (x(s) ,y(s))/2n)

Here - denotes the distant field and ZQ2 its inner boundary, the

cut along the positive x axis is not part of )2" The form in

which the circulation enters is taken from Appendix II. It does not

matter whether one writes O(x,y) or O(x-L,y) as long as the point

where , is singular, namely x = L,y=O, lies outside of the distant

field (inside the inner field),for in the distant field, the

difference O(x-L,y) - O(x,y) can be represented by

f f(o) <0-x, n (o)-y) do.

A change of L therefore amounts to a change of the function f(s).

The last expression and its normal derivative are evaluated

for points x(s) and y(s) on 3, the boundary between the distant

field and the inner field for which the differential equation is

integrated numerically. The function f(s) must be determined in

such a manner that the value of 4 and cn from the outer field

and from the computed part of the flow field match. The last

equation can be used directly to determine . The evaluation

ofn is shown in Appendix VIII. We repeat the definitions and then
result. Let I(s) be the angle of the contour ? of the distant

field with the x axis. Then one obtains, accordinq to Ea. (A52)

and (A53),

30



On (X(s),y(s)) = (f(s)/2)

+ (2 ) -  { f I-f(a)n(a,x(s),y(s))cos(a(o)-B(s))do

+ f (a) t(o,x(s),y(s))sin(6(o) - (s))da

-cosB(s) ffq(.,,n) i(-x(s) ,n-y(s)dPdn
(35)

+sin (s) ff q(f,n]) , r '-x(s) , rl-y(s)d~dn

-(F/r(s))sin (H(s) -(x(s) ,y(s)) }

t=( 2T)"l{ - f f(a) n(O,x(s),y(s)sin((o)-3(s))do

+ f f(o) t(a,x(s),y(s) cos (c )-B(s))da
(36)

-s in6(s) f q riq) ' ( x,-y) d -d n

+cos (s) ff q(n)) n (,-x,-y)d dTI

- (rir)cos ( (a) -I,)(x (s) ,y(s))

where

r(s) = (x(s) 2 + y(s)2) I / 2

e(x,y) = arctg(y/x), 0 < 0<2r (37)

y n((O,x,y) =q') (r(o)-x,n(oj)-y)cos6((o) + I U, (a) -x, n((,-y) sin (cr)

t(oYx,y) = ()x o -~ i o - ()x o -~ o o

For special choices of the contour (3= 0, or B= 11/2) this

expression will simplify qreatly. Some remarks regarding the

approximation of q (in essence of u2 ) which occur in the double

integrals of Eqs. (31), (34),(35), and (36) will be maCe in .the

next section.

These formulae will be used in the following manner.

Assume that one has an approximation to the function f(s). One
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then computes the values of p and 'n from Eq. (34) and (35).

In *n one omits the contribution of the circulation. Using the

value of as boundary condition at the outer edge of the

computed flow field one computes the inner field, for instance

by the Murman Cole iteration. It solves Eq. (5) with the

boundary condition assigned at the profile and determines the

circulation ' so that the Kutta condition is satisfied. The

expression for - at the outer boundary must be modified if the

circulation is modified. From the computation in the inner

region one extracts the values of pn at its outer boundary,

but without the contribution of the circulation. Let n,inner

and flouter be the value of n (with circulation omitted) for

the respective fields. A correction if(s) to f(s), which can be

expected to lead to a convergent procedures, is then given by

if(s) n,outer(s) - n(s). (38)

This discussion refers to computations in terms of the

potential ¢. The procedure for a procedure in terms of the

velocity components u and v is very similar. The counterpart to

Eq. (31) is Eq. (A48), if (x,y) is taken on the boundary between

the inner and outer region, and Eq. (A43) with = 0 and r=0 if

(x,y) is taken in the inner region. We quote:

- _(:-x~-Y) [u( ,TI)- (1/2)u2(SM)]d -

2
+ ( -x ,n-y) [u(L,n)d + v(.,,j)dn) (39)

n
2

-(1/2) u , ) , )d d T 0

(x,y) in the computed region, and
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:1[u(x(s) ,y(s) - (1/2) sin 2 (s) u2 (x (s) ,y(s))]

u( ( ,r( ) - (1/ 2) cos2 (S) u2( (-)Xi :) I (: - (S , (- ) C 22

22

- y(s))do + f [v(.T,n)-(1/2)sin 2(s)cos (s)u2 (i(j) ri(s))] (40)

2
2

t'(o(U),x(o))do -(1/2)fi. (E'-x,r-y)u2(,r)d~dp : 0

in the punctured nuter region, (x,y) on the countour '

Notice that in these equations a contribution due to the circula-

tion does not appear. (This holds only for the steady problem;

in the unsteady problem u is not continuous across the wake.)

An alternative formulation, in which the distant field is

represented by a source distribution in its interior and at its

inner boundary is possible, also if one works with u and v.

One computes for an approximate function f(s) and an approximate

circulation the values of n and t at the inner boundary of the

distant field from Eqs. (35) and (36) and then expresses ¢,t in

terms of u and v. The inner field to which the finite difference

procedure is applied is computed with the values of 't (expressed

in u and v) as boundary condition. At the outer boundary again an

adjustment of the circulation is needed. The subsequent procedure

is the same as before.
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SECTION VIII

APPROXIMATION OF u IN TIE DISTANT FIELD

In application of the far field conditions an approximation
2for q(x,y) = (1/2) ,(u )/ x is needed for the distant field. One

wants the computational effort for deriving such an approximation

to be small. on the other hand the Purpose of the far field

conditions is to reduce the size of the portion of the flow field

in which accurate computations must be carried out, and for this

purpose a good approximation for q in the distant field is needed.

The problem of approximating q is of the same nature here

as in the original formulations of the integral equation methods.

But there one has sots simplifying features. The boundary conditions

for the profile are prescribed along the x axis. In the case of

a symmetric flow field the solution for the linearized problem is

directly expressed by quadratures. Unsymmetric flows are more

complicated but at least the linearized flow field can be computed

once and for all. In the present case the inner contour of the

distant field is likely to be a rectangle. Along this boundary

neither the normal derivative nor the potential is known. By

the computation carried out in the inner field one obtains at the

inner boundary of the distant field only a relation between the

two quantities (or other related data, for instance, the velocity

components u and v), and this relation changes from iteration to

iteration. The relation so obtained must be combined with the

far field conditions. Then one obtains ¢ and ,n or u and v at

the boundary. These are the quantities on which the estimation

of q in the distant far field must be based.

At this stage the experience gained with the classical

integral equation method may be helpful. To give an idea of

what one might do, I describe here a procedure which has much in

common with Nixon's extended integral equation method. For

simplicity we assume that the inner contour of the distant field

is given by two lines y = constant at some distance above and

below the profile (Fig. 12). The computed part of the flow field

34



would then be a strip in the x,y plane. In practice one will,

of course, cut off the strip by lines x = constant; then one

needs additional conditions for these lines. We restrict ourselves

to the simpler problem and derive expression for the upper part of

the distant field.

Let yl be the value of y for the inner boundary of the

distant field. Assume that u is known at y = yl and at another

line y = Y2 ; Y2 
> Y1 . Along lines x = constant, u is then

approximated by

u(xy) y + a(x) + b(x)
2- (y2+x2) y2 y3

The first term is due to the circulation, the values of a(x) and

b(x) must be determined in such a manner that u assumes the

desired values at the lines y = yl and y = y2. It is consistent

with the character of the approximation if we simplify the last

equation to

_" -i y-2 -3
O(x,y) -y + a(x)y + b(x)y

2-r

of course, with modified functions a(x) and b(x). One obtains

u(x,y) = F/(2ry) (41)

+(yl-y 2 ) - 1 a([x,y I ) - (F/(2iTyl)))yl3-(u(xy 2 )- (F/(2-y 2 )))y2 3 y
- 2

3 (uxxY2)_(F/(2Y3 y-3+ -+ (u(x'y- ) /2 )y2)))yyy2 y+}

as can easily be verified. For other contours one might think of

approximations of a similar character.

Assume now that we carry out a procedure based on Eq. (34).

There one carries out an iteration for the computed part of the

flow field in which the function f(s) changes in each iteration

step. We want to determine an approximation to q(x,y) based on

Eq. (41) which pertains to a fixed function f(s). This is done
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iteratively. Assume that one has some approximation to q. One

then uses Eq. (34) to evaluate u for y =yl and y2" One has

specifically:

u(x,y) (21) [ - / f(0) ( (j) - x, yl-y)d (42:,ii "(42)

- .* q( ,) -x, n-y)d1jdn +ir(x,y) - 1 sint(x,y)]

These values of u are then substituted into Eq. (41), and with

this equation values of q throughout the distant field are

defined. With these values the computation is repeated. Of

course, with a more complicated inner boundary of the distant

field, the formulae for computing u at the pivotal lines of the

distant field will become somewhat more complicated and one will

in some regions use, instead of Eq. (41), somewhat different

interpolation formulae.

It is likely that only very few iteration steps will be

needed. The values of q so obtained are then used in the

iteration process for the computed part of the flow field des-

cribed in the preceding section. The key formula is Eq. (38).

The form of the far field conditions just discussed is

probably best for steady flows because they yield local boundary

conditions for (or 4t) at the outer boundary of the computed

flow field.

Because of their global character the far field conditions

Eq. (31) can be used only for linear problems; for the number

of simultaneous equations which one must solve is too large.

Such linear problems arise if one tries to improve a sufficiently

close approximation to the solution by a Newton-Raphson procedure,

or if one computes small periodic disturbances to a steady flow

field. In the latter case one may be forced to use these global

conditions if the frequency is too high or the Mach number is

too close to 1. (The question of how important such cases are

for technical applications is left open.) We sketch the procedure

applicable for these global boundary conditions.
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One chooes, as solution strategy for the inner region, a

procedure which yields, actually as an intermediate step, relations

between the potential and its normal derivative at its outer

boundary. These relations are combined with the far field

conditions in their global form, Eq. (31). At this stage one

must use some approximation for g, for instance q = 0. One

then obtains the values of the potential and its normal derivative

or rather the velocity components u and v at the outer boundary

of the computed field (which is, of course, the inner boundary

of the distant field). One then uses Eq. (A17) (with approximate2.

values of u in the field to compute u for y = Y2' Eq. (A17)).

2nu(x,Y 2 ) + f u(,",1 )- (c-x,y-y 2 )d

22

+ v(EY I) [y (-x,Yl-Y 2 )dF. -(n/2)u 2(x,y 2 )
22

- (1/2) ff u 2 (F,) (-x,r-y)d d .

The values so obtained u(x,y 2 ) together with the values of

u(x,y) with which this step starts are then substituted into

Eq. (41) and the expression for u so obtained is used in the

global form of the far field conditions, Eq. (31). Because of

the changes in q which occur in this procedure, one will now

obtain new vajues of u and v at the outer boundary of the

computed field and with these values the approximation to the

values of u in the distant field is improved.

We mentioned above that the procedure will be applied either

to linear or linearized problems. Accordingly, there will be

a linearization also in the far field conditions. Ic will

depend upon the special circumstances whether a direct or an

iterative approach is then preferable.
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SECTION IX

CONCLUDING REARKS

The report explores the integral equation method from a

theoretical point oL 'iew in some depth, but without losing sight

of its practical purpose. It is shown that the integral equation

method can be regarded as a method of weighted residuals with

rather unconventional weight functions.

The resulting equations contain terms obtained from linear

theory which are solely determined by data at the boundary of

the region under consideration and further nonlinear terms which

depend upon flow field data. These latter terms are of smaller

significance and can therefore be evaluated with reduced accuracy.

In the original form of the integral equation method these field

terms are approximated by means of boundary data. This method is

particularly valuable for purely subsonic flows.

In the transonic region, nonlinear flow field data from the

interior gain importance. To evaluate these data Nixon uses

again the formulation of the integral equation method. Since the

primary goal is to make the residuals in the partial differential

equation small in the region close to the profile, it appears

preferable to use these formulations which use local weights rather

than the global weights of the integral equation method. Accordingly,

the present paper advocates hybrid methods in which the integral

equation formulation is used at points where the nonlinear terms

are of small importance while finite difference or finite element

methods are used in the region close to the profile. Such a

procedure makes it possible to formulate the shock conditions and

the conditions at the sonic line in a local form, which is closer

to the nature of the problem at hand. The form in which these

conditions are expressed by the integral equation method is very

ingenious, it is true, but still somewhat awkward.

In an extreme development one uses the idea of the

integral equation method only in the distant field in order to

derive boundary conditions at the boundary between the distant
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field and the computed part of the flow field. The far field

conditions found in the literature assume that in the distant

field the linearized potential equation holds. The method

proposed here borrows from the integral equation method the

idea, that the information about the distant field that is needed

to take nonlinear terms into account, can be inferred from the

data for potential and its normal derivative at the boundary

between computed flow field and distant field. One can hope that

such improved boundary conditions allow one to reduce the size

of the computed part of the flow field without undue loss of

accuracy.

The development has been carried out for two-dimensional

problems. But extensions to the three-dimensional problem are

not difficult. Such extensions have already been made by Nixon,

but of course not for the hybrid form of the method and the far

field conditions advocated in the present report.
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APPENDIX I

DERIVATION OF THE SHOCK CONDITIONS FROM THE
POTENTIAL EQUATION BY MEANS OF THE

CONCEPT OF WEAK EQUALITY

The starting point is the potential equation (5)

- 2 0.(l
-(x - ('% /2)) + (Al)

Let w(x,y) be a weight function of finite support (this means that

w is different from zero in a finite region only). It is assumed

that all derivatives which occur in the analysis exist and that w

and its first derivative vanish at the boundary of the support region.

The postulate that Eq. (Al) is satisfied in the weak sense is ex-

pressed by

ff w(x,y) / 2 ) ) + 4)] dxdy = 0

for every function w(x,y). Carrying out the usual treatment of

derivatives foz generalized functions, one obtains by means of in-

tegrations by part

4 -(2/2)) ?_w + y 4) ydxdy = 0.f xf x ( x y7 y

The integral over the boundary of Q vanishes because of the defini-

tion of w. The integrand is bounded even at the shock. The expres-

sion therefore remains unchanged if one excludes the shock by a strip

of width 2- and then lets E tend to zero. Let the region so modified

be denoted by Q' (Fig. 1).

In the region Q' the partial differential equation is satisfied

pointwise. Now we carry out an integration by parts in the last r

equation. The boundary now includes portions i and 3Q2 which ex-

tend upstream and downstream of the shock in the distance c. Let
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the shock be given by x = Xs(y) Then one has for i

SSx = x s (y)-

and for 3Q

x=x (y) +E.s

The double integral which arises by the integration by parts vanishes

because p satisfies Eq. (Al) point wise in W'. The contribution of

the outer contour of Q' vanishes because of the definition of w.

One therefore obtains

2f w{[4, - ( 2/2) ] dy - dx] = 0

The direction of integration is to be chosen so that the region of

integration lies to the left. This means that one proceeds along

3Q and 02 in opposite directions. One has, because of the defini-

tion of w

lim (w(x (Y - C,y) = lim W(X s(y) + C,y) = W(xs,y)
E -0 C 0

Using the notation of Section III one therefore obtains

f W(X (Y),Y) { 4[,x - ( x2 /2) ] + dy - [ + dx} = 0

In order for this equation to be correct for any choice of w, one

must have

2 dx
[ x x/2) ] + - Sy- 0
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APPENDIX II

THE EXPRESSION Q(x,y)

We have defined in Eq. (21)

Q(xy) = ff 2 + ()]W(-x,-y)d~dn

At the moment Q is some region of the F,n plane in which p satisfies
the Laplace equation. Its boundary is denoted by 3Q. The region may

include shocks. One obtains in a familiar manner by carrying out

integrations by part

Q(x,y) f 'pU(-x,n-y)[ (C,n)dn - n(Cn)dE]
3Q

- f 1) fip,( -x,n-y)dn - n(~-x,n-y)d(

2 2
-(1/2) fJ wp- x,n-y) J_(t ( ,n)d~dn (A2)

A further double integral with integrand 0(iIP+0n) vanishes because

satisfies the Laplace equation. The integration around the contour

2a is performed in the direction for which the interior of 0 lies to

the left. One has

- (1/2 fJ ,( -x,n-y) ( 2 )d~dn = - 1 ( -x,n-y)q dny 2 22
S(A3)

2 (M)

+ (1/2 ff P(x-x,n-y)4C Vn)d~dn

The form of the right hand side in Eq. (A3) may sometimes be pre-

ferable because it eliminates one differentiation in the unknown func-

tion 02. It thus becomes applicable, even if,in some approximation,
2F,

(( 2)/a contains delta functions. The integrands of the double

integrals are singular at the point (F,n) = (x,y).
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We choose for a region of the 4,n plane punctured at the

point ( = (x,y) (Fig. 2). Its boundary is Q. Part of '1L2

at a great distance, to be denoted by 2 is given by a circle

with a radious R. Subsequently, the limiting process R- will

be made. In the familiar forms of the integral equation method

the profile, extending from E, = 0 to F = L, is replaced by a cut

along the F-axis. To prepare for a modification, we allow for

the possibility that the part of 3Q which is usually given by the

two borders of this cut lies at some distance from the profile.

This part of DQ is denoted by 92 The wake is excluded by

a cut along the -axis. The two borders of this cut form the

boundary DQ 3 They are joined to Q2 either at the trailing edge

= L or at some point further downstream = LI  The junction

with i lies at = R. The small circle, by which the point

(En) = (x,y) is excluded is denoted by 3D4*

In the presence of a circulation the term of the potential

which are dominant at a large distance have the form

= const -F0/27

where r is the circulation and

0( ,n) = arc tg (r/E); 0 < 0< 27.

The choice of the constant in the above equation has no effect on

the flow field, because the flow differential equation contains only

derivatives of . Accordingly, we can ch'ose (for R large)

p ='((1/2) - (0/27T)). (A4)

As R tends to infinity,F and i tend to zero strongly enough

that for the boundary i the first integral on the right of

Eq. (A2) vanishes. Regarding the second integral one observes that

F, ~dn T) pfdt. (di /dn)do

where d/dn denotes the derivative in the direction of the outer

normal and do is the arc length of 3Q. For R sufficiently large
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and (.,y, bounded, one has

log R

R-I
dn

do = Rd9.

One then obtains

2
f (d /dn)ds = f(0/2) ( 2/47T) 0.
3Q1  0

The contribution of the contour Qi vanishes, if one chooses the

c:onstant in P, which is arbitrary, according to Ec. (A4).

No simplifications arise in the integral for a general choice

of the portion of the contour @Q2  In cases where 2 is represented

by the two borders of a cut along the x axis (from =0 to =L) one

can treat D 2 and 723 together. On the lower side of the cut one

moves in the negative, on the upper side in the positive direction.

In this case drn=0 and one obtains

- J ( -xn-y) T (F,n)dd

L
- j (-x,-y){P (1,+0) - @ (,-0)}dC
0

Here we have written

lim ( = "C ,+0), lim p (g,,) = (F,-0)

r*O n-+O
r>O n<0

The wake does not appear in the integral because there 0 is con-

tinuous. At the upper and lower side of the profile,p is given by
the boundary conditions. For a symmetric profile one has

= 4

45

....... . II 1 I-- - " I '11 I -Ill I ; - . . . [1 ,, . .



If 3 22 + 3Q 3 is given by the two borders of a cut along the axis,

then one obtains for the second integral in Eq. (A2)

f q(En),(I-x,rj-y)d1 = f hHF,,+O) - 4Ui,-)J,]' (F-x,-y)dE

2+n3 0

At the profile the difference 4(i,+0) - (i,-0) is not known. For a

symmetric flow field it vanishes along 3Q + 3 In the wake ( 3
2 3.

this difference is given by the circulation. Substituting, also

the expression for p, Eq. (18), one obtains

+ 1, f ( -x,-y)dl -1'' (x-.,,y) Y= l[O(x-LlY)- ]
L1  L1

where

i)(x-_-,y) =arc tg(y/(x- '),

0 < 0(x-it,y) < 2n.

The contour integral around the singular point is treated in

a familiar way. Let

F-x = r cos 0

n-y = r sin 0

The first integral over 3Q in Eq. (A2) vanishes, because the singu-4
larity i = log r is too weak. For the evaluation of the second

integral we note that

= r 1 cos r tp = r sin 0

d -r sin0 O r cos

The integration proceeds in the negative 0 direction. There-

fore

lim ( (,n)L[ (-x,n-y)dn - rFl (-x,n-y)d1])= 2mi'(x,y)
r-.O 3Q 44
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One thus obtains

Q(x,y)= 2'; (x,y) + , -x, -y) [ dr,, - 'd:]
:;'2

_/. ,( ,,,r]) [(c (>x,n(-y)dn- ( x,T-y)d:.] (A5)

2

-U(T-0(X-LIy) -(1/2). f (,--x,n-y) n) r(

Eq. (22) is obtained by specializing :§22 to a cut along the x

axis.

A special limiting process familiar from potential theory

is needed if the point x, y approaches a point Xc, yc of the

contour along the inner normal. One then treats a vicinity of

the point xc Yc separately. Let , be a small portion of the

contour D2 which contains the point xcyc, and let IL" =

S-9.U For (x,y) = (XcYc) the integrand in

r ( r, ) [' '(U-Xc, -c d - ( _Xc '  rYc d
S c c c c

remains bounded provided that 3) has finite curvature at (xy). We

therefore can immediately make the limiting process in which the

excluded portion tends to zero. Discussions familiar from

potential theory give

lim ( , ) (,,--x, r-y) d -r ( "-x, TI-y dr =- (XcY c(x y )- (x c , c y n T1 c

c c

Including also cases where the point (x,y) lies inside of K
2

we rewrite Eq. (A5) in the form

Q(x,y) =Urp(x,y) + f ,(-x,j-y)[ 4(,,)dn - (:,n)d-]
J 22

- ff(r',) [y.(E-x,n-y)dj -) ( -x,-y)d,] (A6)

2

F ( T-4 (x-L1,y))-(l/2) rrr-x,rl-y) (2 (,) )d-dn
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whore 2 for (x,y) inside

= 1 for (x,y) on )

= 0 for (x,y) outside ).

One has (Cr the second integral over 2

liram:(i x(s),n(o))-y(s), dno

x (s ) ,- (c )

y~s) -*r(, )

- (, ) -x(s) r(n) -Y (S) d (o) - (!/2) R( )-

where R(c) is the radius of curvature at -(a), (0), positive if

is convex.

The expression Q(x,y) is continuous along a line y = const as

the point (x,y) passes through a shock. This is seen in the follow-

ing manner. We have postulated continuity of ¢. In the integrals

over 2... .. and its derivatives are continuous, because the shock is

not part of ,Q 2 and therefore (x,y) (E,n). A discontinuity can

therefore be introduced only by the double integral. It would be
3.2

caused by the jump of .2 at the point (r,n) = (x,y) if the point

(x,y) passes through a shock. For a discussion is suffices if one

considers the critical integral for the vicinity of some point of

the shock x = x s (y) with ,,= 1 upstream and = 0 downstream of

the shock. We enclose this point by a rectangular contour (Fig. 3).

Distance points of K will not give a discontinuity in Q, therefore

it sufficies if one evaluates the integral

(1/2)ffy (F-x,n y) dd

once for (xy) = (x - c,y) and a second time for (x,y) = (x s A,y)

and examine the difference in the limit c = 0. The integration

is to be carried out for the shaded area of Fig. 3. One obtains,

by carrying out the integration with respect to ,
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2 q2

(1/2) [- f (Fl-Xs+C,n-v)dn + f s(n) -x s  C,x+u n-y) d

in the second case with c- replaced by -E. The first integral

which comes from the left boundary of the rectangular box, will

not cause a singularity as the sign of c changes. In the second

integral we place the origin of F', n' system into the point

(X ,y) and approximate Fs' (n) by c = - tgn, where 2 is the

angle of the normal to the shock at the point in question with

the x axis. Finally we substitute '4; one then obtains

1n2
- (1/4) f log((-T, tg+) 2 + T, 2) dn'

1n1

This integral can be evaluated in closed form. The resulting

expression is continuous as c passes through zero.
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APPENDIX III

DERIVATIVES OF Q(x,y)

After replacing the last term by means of Eq. (A3) one ob-

tains from Eq. (A5) by differentiation with respect to x

Q x(x,y) = 2' x (X,Y) + f -i(C-x,n-y)[¢Cdn-n d ]
a2

- f P(1,n) [-4y j -x,n-y)dn + (-,-~

22

- f ( -y) d

- (1/2) f (-x,n-y) 2 ( ,n)dn

Q 
2

+ (1/2) -L ff i (-X,n-y)o 2 (,n)ddn (A7)

In the expression with the factor r we have substituted the

form in which it originally appeared in Appendix II. One can carry

out the integration with respect to and then obtains

00

-P f Cn (-x,-y)dE = F 'p(Ll-x,-y) (A8)
L

In the second integral over Q2 we use the relation -1= nn'

For the differentiation along a contour given by

= cC(n)

an operator
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= + d_ (A9)

is introduced. One then obtains for the second integral over Q2

- f 'Un) [-t( -x,n-y)dn + PC (C-xn-y)d ]
2

D D

df (ipn c )dn flC- j + f -jI(n) dn
3 -2 a(, ) )n = - ( , l i m i t s a p 2 n - (d

= -( ') I + f i ,((C'n)dn + 4 (¢,n)d¢)

limits a 2

The contour 32 starts and ends at the point = L ,  = 0 where

the two borders of the wake contour M3 start or end. There the

terms for the limits are canceled by the expression Eq. (A8).*

We write

x = u, y = v (A10)

The integrals over 2 in Eq. (A7) then contract to

f-(u(jn) - (1/2)u2 (F,n)) r( -x,n-y)dn + u(C,n) p ( -x,n-y)d

2

+ J v(U,n)[IL( -x,n-y)d% + p(Fj-x,-y)d ] (All)

*This simplification occurs only for steady plane flows.
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In evaluating the derivative of the double integral in

Eq. (A7), some precautions are necessary because of the singularity

of the integrand. In the original definition of the region '6

the singular point (E,n) = (x,y) is excluded by a small circle

of radius : which moves as the point (x,y) moves. This must be

taken into account in the differentiation with respect to x or y

(up to now the exclusion of the point has not mattered in the

evaluation of the double integral). We divide the region Q into

two regions by surrounding the point (x,y) by a box of finite

dimensions (Fig. 4). The boundaries of the box remain fixed

while the differentiation with respect to x or y is carried out.

In the outside region Qi the differentiation can immediately be

carried out under the integral sign:
(A12)

(1/2)2-- ffifI -x'n-y)u2 ( 'q)d~dnj=-(i/2)ff~ ( - x ' f - y ( u 2 ( ' n ) d ~ d q

For the evaluations within the box (region 2) we set

Fi= -x

ril = -y (Al3)

r 2 + 2 1/2
r = (6 + I

The boundaries of the region Z 22 are given by

= xl1and = x2, x1 < x < x 2

n = yland = Y2 ' Yl < y < Y2

and the small circle with radius c around the point (x,y).Let

temporarily x2  Y2
2 Y2 2I = (i/2) _ f (U-x,n-y)u ( ,n)d~dn=x I  n=y 1

r >E

then, after substitution of Eqs. (A13)
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x2-x Y2- y 2

I = (I/2)- [lim f f (V1 lnl)u (l+xn 1ly)dFjdjlI
C-0 E,=Xl-X l.=Yl-Y

r>c

In the i l system the small circle around the singular pcint2
is fixed, even if x or y changes. The function u depends upon

two arguments (originally and q). For clarity, we denote

differentiation with respect to its first or second argument,

respectively, by subscripts 1 and 2. Now we carry out the

differentiation with respect to x in the last expression

Y2 y 2 Y2 -y 2x 2-x, nl)u (x I F %+y)dn I  f P(x 2 -x, ( y)dn1I= (1/2) 1 .(X-Xx'- Vu (x2'T

-x%lim- y2 -y 2
lim f f 4 ( i, )u +X, +y) dE0 l=Xl-x l=Y -

r>Fx l=yl-y

Returning to the original variables C and n one obtains
I =(1/2) [ f (Xl-X,n--y)u 2 (x2 nl)d2 - 2 )d

n=Y F -Xn-~u Xl~l~d - f qp) (x 2 -Xnyu x2 1n1=Y r=Yl (A14)

x2  Y2 2

+ lim f f (-Xn-y) (3(u
C0 F=x I  n=yC

In the double integral an integration by parts with respect to
' 2 2 2

is carried out. Lct 72 be the circle (F-x) + (n-y) = .

One obtains

Y2 Y2  2
f= -f C (Xd-X,r-y)u + f k (x 2 -x, n-y)u (x2 n)dn

n=yl Yl

(A15)

lir f F(F-xn-y)u 2 (F,)dr - lim ff (F-x,n-y)u2 (C,)dtdnc- O 3S2 C-0 DO
22 2

53



The first two integrals in Eq. (A15) cancel the first two integrals

in Eq. (A14). We introduce temporarily

T-x = r cos 0

n-y = r sin 0

Then along DO2

d c E cos 0 do

Moreover

cos e

The integration around 02 proceeds in the negative 0 direction.

One obtains

lim , P(F-x,n-y)u2 (F,n)dn = - mu2(x,y)
C-+0 Q2

2

The double integrals in Eqs. (A15) and (A12) can be combined. One

finally finds

2(1/2) f f7 q,; (r-x,n-y)u ([,r)d~dn =(x (A16)

2 2-71/2u2(x,y)-(i/2) !.f q, (-x'I-y)u u( ,n)d~dri

Substituting these results into Eq. (A7) one obtains

QX (x,y) = 2 u(x,y) + (Al7)

S- [u(,r)-(/2)u2 ( ,)]i (-~r-)drn + u(U,n)%~r ( -x,nl-y)d

2

-f / u(x y ) - ( / 2 ) u u ( ,n )  (l -x ,n-y )d n

2
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Specializingi this equation to the usual case, where ;) 2is given

by the two borders of the cut made along the profile (from x =0

to x = L), one obtains:

L

QX (x,y) = 2ffu(x,y) + f ((,Ou ,) T Ex-yd
0

L
+ f [v( ,+0)-vU,'-0bP?(E--x,-y)dF, - (Al18)

0 1

-(IT/2) u 2(x,y) - (1/2) ff u 2 "n Cxnydd

A corresponding procedure can be carried out for Q Y
For the specialized region Q one obtains

L

Q y(x,y) 2rrv(x,y) + f[v( ,+O) -vU~i,-o)] Ip (C-y,-y)dE
y 0

L
-f [(Et,+0)-u (E,-O)4 x -y)d (A19)
0C

-(1/2) ff u 2 ,n)&- (,-x~n-y)d~dn
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APPENDIX IV

DERIVATION OF THE EXPRESSION Q (x,y) BY APPLYING
THE WEIGHT FUNCTION TO THE POTENTIAL EQUATION

The weight function has a singularity at the point

(,r) = (x,y). The question arises to what extent this fact

imposes a restriction on the form of the residuals to which this

weight function can be applied. Introducing, as before

F-x = rcosO, n-y = rsinO

one has

-i1-
- -r o 0, -r sine

We postulate that the residuals to which this weight function is

applied be continuous and that its first derivative exist at the

point (x,y). Such a residual can then be written as

R(,Ti) = R 0 + R rcos0 + R rsinO + terms of higher order

Here Rot R and R are constants. One then considers expressions

f(1 0 + R r cos0 + Rn r sin0) d dn

r> £

- ff(R0 + R r cosO + R r sin)r- cosO r dr dO

r>

0<0<21f

r=r(o)
f - [r R0 cosO + (r /2) (R cos2 + R sinO cos6)] dO

6=0 r=c

The contribution of the lower limit r=c vanishes in the limit E=O.

The weight functions considered in this appendix are admissible

if they are applied to residuals which are sufficiently smooth.
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Let P denote the weighted residual which one obtains by

applying the weight function -K to the potential equation (Eq. (5)).

P(x,y) =- ff WE (F-x, n-y2)(1/2 + (0p )Jddn
+ TI n (A2 0 )

The region Q is the same as before (Fig. 2). The weight function

-% is regular at the shock (provided, of course, that the point

(x,y) does not lie at the shock). The potential equation is

supposed to be satisfied in the weak sense, in particular at the

shock. The shock region is therefore included in the region Q

and no discussion of the shock conditions is needed. Carrying out

the familiar integrations by parts one obtains

P(x,y) =-R (C-x, ri-y) I((,-(/ 2)(p
2(,n))dn-p ( ,n)d§j

+ (,) [ (-x,n-y) d] (A21)

-(/2 ) f/ f ( -x ri-y) ' (F,r)d~dr

With the use of the definition Eq. (A9), the second integral is

transformed as follows

/ (,)[(C-x, T-y) dn- r)( -x,n-y)dF,

= - ) (,) (%-x,n-y)dn + U(-x,T-y)d j (A22)ri 11

D
f wn)-Q(V)dn + -4~n f ip(C-x,Tj-y) (~dn + dF)

d n Ti - Ti iC

limits

The portions of the contour a2I' 32 and 3Q form a closed curve.

The contributions at the limits therefore vanish. The same holds

for the small circle a4" Across )Q 3 (portion of the

wake),'P=u and ,=v are continuous,the integral therefore vanishes
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for JQ 3. The first two integrals in Eq. (A21) evaluated for Q2

therefore give

f _(U([n -12U ( -,n-) + uU n) r) (C-x,n -y)dF

2

+ f v(F,n) [4 (E-x,nj-y)dC + 4) -x,nj-y)dnlj (A23)

The contour DQ4 (small circle around the point ( ,n) (x,y))

yields

4 f)( -x'Tn-y)[ ( ,Tn-(/2) 2 (E,T))d- ( ,n)dTn]

-Jrn 2fT r cosO[u( C,lT,(1/ 2 ) U2 (,i)rcosO + v(C,Tj)rsin61de

rE

T T [u(X,y)-('/j)u2 (X,y)I (A24)

Evaluating Eq. (A22) for DQ one obtains

34

lim f r- sin[v( ,)rcos-u(Cj,n)rsinejd8

IT u(x,y) (A25)

Substituting Eqs. (A23), (A24) and (A25) into Eq. (A21) and corn-

paring with Eq. (A17) one finds that, indeed,

p(x'y) Q 0 (x,y) (A26)
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APPENDIX V

DERIVATION OF THE EXPRESSION Qx BY APPLICATION OF THE
WEIGHT FUNCTION - q TO THE FORMULATION IN TERMS OF u AND v

The derivation to be shown here has of course great similarity

to the one of Appendix IV. There are some differences in the de-

tails. One additional question arises. In the formulation of the

problem in terms of the potential 4 this quantity is always assumed

to be continuous through the shock. To ensure this continuity in

a computation in terms of u and v one must add the postulate Eq.

(15), i.e.

[ul + (dxs/dy) + [v] + = 0 (A27)

A second shock condition is given by conservation of mass, Eq.

(A14)

[u - (1/2)u 2 _ - Iv]+ (dx /dy) = 0 (A28)

First we show that the partial differential equations Eqs. (12)

and (13) viz

(12- ui 2 + v 0 (A29)

Uy vx = 0 (A30)

and the shock conditions (A27) and (A28) give the expression Qx

if one applies the weight function - to the equation of con-

servation of mass (A29). Subsequently we shall ask whether the

postulate Qx (x,y) = 0 (for all values of (x,y)) ensures that Eqs.

(A27) through (A29) are satisfied. It is assumed that the u field

and the v field are always connected by Eq. (A30).

To derive the first result we apply an integration by parts

to the following expression, in which the integrand is formed with

Eq. (A29)
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2
P(x,y) - fJ f~ xny y-u~rl(/) ( ,n)) +,vd n

-- f 0,((-x,n-y) fu(F,,n)-(l/2)u 2(F,n))dn - v(F,n)dj

32 2

+ ffloiP ( -x,n-y)(u(F,,n)-(l/2)u 2in)+ ( -X,n-y)v( ,n)]d~dn

One has

=ffl-4'r r (C-~IyUFr )(-x,n-y)uU§,n)]dd

+ ff ri U-Xn-YH) nu ( ,n) -v( 1 ldd

The double integral vanishes because of Eq. (A30). One thus obtains

P(x,y) =f -[(,l-12u2C(-~-~~ + u(E,n)'p (F-x,n-y)d

+ f v( ,rl)[ (C-x,i-y)d § + 'p (&-x,n-y)dn]

-(1/2 ff ~P~(Fx,f-y)u 2 (C~n)d~dq (A31)

The contribution of the contour DQ (large circle which moves to

infinity) vanishes,so does the contribution of the integral along

the wake (contour Q 3 ) because of the continuity of u and v. The

contour Q4(small circle around the point (C,n) =(x,y)) cives
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2 i(u(x,y) - (1/4)u 2(x,y).

With these results one shows that indeed

P = Qx

The shock need not be considered as part of the boundary of

Q because we use the concept of weak equality in Eq. (A29).

Nevertheless let us introduce a contour M 5 which is formed

by the two borders of a cut extending along the shock. (Traveling

along the contour one must leave the interior of Q to the left.)

One therefore travel, in the positive n direction on the upstream

side of the shock. This contour gives a contribution

-,-)[-(u( )-(i/2)u2(,)) + v(Cr) (d s/dn)] + dp

5

+ f p (U-x,n-y)[u(F,n)(dF s/dn) + v(,)]_ dn (A32)

5

where 3 is the upstream portion of the contour Q5 " The two

integrals vanish because of Eqs. (A27) and (A28).

Next we assume that we have a u field and a v field connected

to it by Eq. (A30), and that the expression P(x,y) vanishes for all

values of (x,y). Each value of P for a given (x,y) arises by the

use of a weight function W .(U-xq-y). By an argument similar to

that shown at the beginning of Section III one can form linear com-

binations of such weight functions which represent weight functions

w(x,y) with finite support. We choose for this purpose weight func-

tions which do not straddle the shock. Then it follows that Eq.

(A29) is satisfied everywhere (in the weak sense) in the region where

the shock is excluded. Therefore the residual expression (A31) for

the region Q with the shock excluded vanishes identically. Let us

denote this expression by P(x,y). P(x,y) is identical with P(x,y)
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except that the contribution of the shock boundary must be taken

into account

PXY) P(xy) + + (-x -y)[-(u(,n)-(I/2)u (,i))

35

+ v(E,,n) (dFs /dr] + dri

+ f + 4' (4-x,,T-y) [u(,rI) (ds/dq) + v(,, ) I +d

-p5

We have postulated that P(x,y) = 0 and we have shown that P(x,y) = 0.

The sum of the two integrals therefore vanishes identically in

(x,y). The sum of the two integrals represents solutions of the

Laplace equation, in the whole x,y plane except at 3 5 for

:(x ,r]-y) and ' (- x,n-y) are solutions of the Laplace equation.

At the shock this function has jumps in the normal and in the

tangential derivatives which can be expressed in terms of the

factors of 4 and , . But the above mentioned analytic function

is identically cqual to zero. The jumps are therefore zero and

these two factors will vanish. Hence it follows that Eqs. (A27)

and (A28) are satisfied.
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APPENDIX VI

DERIVATION OF THE EXPRESSION Qx FROM THE

PARTIAL DIFFERENTIAL EQUATION FOR u

In order to recognize the effect of the nonlinear term we

introduce

q = (/2 (U 2 ) (A33)

This quantity can be regarded as a source term in the Laplace equa-

tion. The formulation of the problem in terms of u is given by

Eqs. (15), (16), and (17). Then onc has

u + u - = 0 (A34)

[u] + - [u2]+(cos23)/2 = 0 (A35)

and as a substitute for Eq. (17) which is a consequence of Eq. (14)

-[u] + tg + [v] = 0 (A36)

We had, Eq. (?)

tg3 = -dxs/ dy

In Eq. (A36) it is assumed that one has constructed a v field,

which is connected with the u field by the irrotationality condition

u - v = 0 (A37)y x

in the manner described at the end of Section II.

The difference between the present formulation and that of

Appendix V lies in the fact that Eq. (A37) is used merely to deter-

mine the v field, while the basic problem is solved in terms of u.

If there is a residual in Eq. (A34), then there will also be a
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residual in the expression from which this equation is derived.

Let the latter residual be r(x,y). Accordingly

u + v - q = r(x,y) (A38)x y

Then one obtains for the residual in Eq. (A34)

" xx + Uyy - qx = rx (A39)

The expression (A34) is not the equation of conservation of mass,

but only its x derivative. In spite of its form it is not a conser-

vation law, and therefore need not to be satisfied as one traverses

a shock. Test functions of the kind used in the theory of gener-

alized functions cannot be used if their support region straddles

the shock. The functions t allows one to construct inadmissible

as well as admissible test functions. We denote the residual

expressions which arises from Eq. (A39) by P.

P(x,y) = ff ,;,( -x,n-y)r ( ,n)d~dn

= f QU -x'rl-y) (u V ( '1 ) + u T1( ,n) - q (~n))d~dn

= f i(k-x,-y) u (F,n)dn - u (,n)d&F

- u(F, )) {i(-x,n-y)dn - t(E-x,n-y)d.}

- ff q,(C,n) (C-x,n-y)d~dn (A40)

Here the contour M includes the two borders of the cut along the

shock (denoted by DQ5 ). In the first integral on the right we

replace u by v by means of Eqs. (A37) and (A38)
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f q)(-x,n-y) {ur (,ri)dn-u (.,n) }d.

=- f 4(-x,n-y) {v (Ef)dn + vT(E-n)dn + f 4,(-x,n-y)q(C,n)dn

3Q

+ f

- +~ 4(-~-~(,)d(-n -~n}+f4(-~nyq~nd

+ f y(<-x,n-y)r(,,n)dn

In the last step an integration by parts along the contour Q has

been carried out. The term outside of the integral vanishes

because the contour is closed. The integrals in Eq. (A40) over

the contour at infinity 3Q1 vanish. So does the integral over

the wake Q3 because of the continuity of u and v through the wake

in a steady plane flow. The integral over the small circle around

the point (x,y) is treated in a familiar manner and one obtains

27 u(x,y). One thus obtains from Eq. (A40)

(x,y) = 2Tu(x,y) +fv( ,)rU ( -x,r-y)d + )T ( -x,n-y)dn}dFj

+ f u(C,)f{-tp(-x,q-y)dn + )(-x,n-y)dE}

+ f , (t-x, r-y) q (,fT) dn (A41)

+ f ( -x,-y) r ( ,n)dn

- ff q,(C,n)q,( -x,n-y)d~dn
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The function q which is the expression for the nonlinear terms

enters the last equation, once because of the source terms in

Eq. (A34), a second time when the derivatives of u are replaced

by the derivatives of v (by means of Eqs. (A37) and (A38)). In

the original differential equation the nonlinear terms appear in

the form qx = -(1/2)3 2(u 2)/'x 2 ;they are independent of the local

value of u or its first derivative. The rewriting of the u

derivatives generates a second nonlinear term. The derivation

has been carried out in the form just shown to make clear that

the term so obtained is not solely the source term in Eq. (A34).

These terms can be combined

-JV q (E,ri)(U-x,r1-y)d1dn + f q(,n)(F-x,n-y)dF

ff q(F,n) -(r-x,q-y)d~dn

S2
= (1/2) f (u (F,I (-xn-y)d~dn

Q

This expression can be transformed by a further integration by

parts, so that derivatives of the unknown function u2 no longer

appear. In evaluating the result one must remember that one deals

with the region Q punctured at the point (x,y). One obtains

+(1/2) D u 2(<,l) ( -x,n-y)ddn

= (i/2)fu 2( ,)Lp (F,-x,n-y)dn - (1/2) ffu 2 (Cn)ip (C-x,n-y)d;dn

Here the double integral must be evaluated for the punctured

region P (if the point (x,y) lies within Q). The last form has

the advantage that it automatically takes 6 functions into

account which might for instance arise on the left side of the
2

last expression if in some discretization procedure u is

approximated regionwise by constants.

The discussion just carried out has the purpose to explain

that in the final form of the expression the nonlinear terms enter
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in a rather complicated manner. The final expression for P7 is

best obtained by substituting immediately the form of q.

(x'y) W 7~(-x'n-y){---2 (u(C'n)- (1/2)u 2( ,n))+ u (,)dd
F, 2 F~

a 2
-f iP(-x'n-y){ (u( ,n)-(1/2)u ( ,n))dn - u T ( ,n)d~1

(A42)

-f {(u(C,n)-(l/2)u 2( 'OM)(E(-x,y-y)dn -u(FE,n) T ( -x,n-y)d~}

-(1/2) ff (pC-x'n-y)u 2(C,n)d~dn

In the first integral on the right, u is replaced by v by means

of Eqs. (A37) and (A38). (A corresponding step has been carried

out before.) one obtains

-f WP-x'n-y){v n ( , q) d + v C(E,n)dC}+ f qP(C-x,Tn-y)r(FE,T)d

a~v( ,n){ipC ( -x,n-y)d& + (&-x,nj-y)dn)+ f (E-x,n)-y)r(E,n)dn

Again tne terms outside of the integral vanish because the contour

3Q2 is closed. The integral for the small circle around the

singular point (x,y) is treated as above. One obtains

- f E (U-x,n-y) [(U,n)-(l/2)u 2~n)nv(,~~ (A43)

(Continued
+ f tp(F-x,n-y)[u(F,n)dE+v(F,,n)d)iH next page.)
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(1/2) ff (F-x,n-y)u2(F,n)d~dn + f (-x,n-y)r(,r)d) (A43)

(Concluded)

with a= 2 for (x,y) within Q

a= 0 for (x,y) outside 0.

The contributions of the shock contour @25 vanish because of the

shock conditions (A35) and (A36). Therefore, by comparing with

Eq. (A17) and using Eq. (A26)

P(x,y) = Q (x,y) =p(x,y) - f (-x,n-y)r(C,n)dn
x

This result is to be expected on the basis of the following

reasoning. Using the original definitions one has, from Eqs. (A20)

and (A38)

P(x,y) =ff (-~-~ Endd

- f i) r (-,YOr - f f r ( ,n) P( -x,'n-y) d~dq

=f (E-x,n-y)r(U,n)dn + P(x,y)

The residual expressions P (arising from a formulation in terms of
u) and P (arising from a formulation in terms of 0 or in terms
of u and v) are closely related to each other but not identical.
This is caused by the fact that Eq. (A39) with r =0 merely guarantees

that the function r which appears in Eq. (A38) is a function of y
only. In working with Eq. (A39) we impose the additional require-
ment r = 0 at infinity and use the original expression I.

To treat the limiting case, in which the point (x,y) approaches

the contour a2 from the interior of Q we rewrite the integrals

over Q2 in Eq. (A43) as follows.
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+f U,n){ (-x,n-y)d~ j p (-x,n-y)d}(A4

22

+ (1/2) f U2 ( nq(&-x,n-y)dn

Let 13 be the angle of the -1nner normal of the region Q2 with

the x axis (Fig. 5). Then, for the unit vector, in the direction

of the inner normal

en = excos13 + e ysin13

and for the unit vector in the direction of the tangent to

pointing in the direction in which the integration proceeds

e exsina - eycos3.

If do is the line element of Q one has

do si ,do

then

=4 Cosa3 +- sin13 =+d (A45)
dn T1do rido

dt q}sn3 13 - -cy do

* - Cosa + ! Sin13
' ~dn dt (A46)

d __S a - 4L sin13cos13.
Fdo dt
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The expression (A44) then assumes the form

2 2
f [u(n) - (i/2)cos 2(c)u ( ,n ) ] (d /dn)do( (A47)

22+ f [v( ,n)-(i/2) sinS(o)cosI3(0)u2( , )I(di/dt)dO0

We defined

q, = log r(U-x, n-y)•

We consider the limiting process where the point (x,y) approaches

a point (xcY c ) along the inner normal. Applying a procedure

familiar from potential theory, one treats the integral along

32 in a small vicinity of the point (xcYc ) separately. In the

limit where (x,y) coincides with xc ,yc) the integrand of the first

integral in Eq. (A47) remains bounded in the outer region (where

the point (xcYc ) is excluded. For the small region which

contains the point (xcyc) one obtains

f(dq,/dn)do = -IT.

The second integral in Eq. tA47) must be evaluated as Cauchy

principal value.

One thus obtains, from Eq. (A17), for the point (x(s),y(s))

on the contour

.2 2P(x,y) =Tr(u(x,y) - (i/2)sin23(s)u 2 ( x , y )  (A48)

2

22
+"2f (v(T,n)-(I/2)sin (s)cosa(s)u2 ( I, ){P(Fx,ny)d + D- ( -x,n-yWdI

- (1/2) ff ( ~U-x,r1-y)u2(t,n)d~dn

3 2
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To avoid an ambiguity in the signs,P and , instead of n and

have been reintroduced, although the ln and qt express the nature

of the integrands more clearly.

The evaluation of the double integral requires some

precautions because of the singularity introduced by the factor

in the integrand. The region under consideration is the

punctured region Q. In a specific case the procedure depends
2

upon the chosen representation for u
2 . To show what will happen

we consider the case where u2 is constant within an element

bounded by straight lines. Then one obtains

-(1/2)u 2 ff d~dn = -(1/2)u 2 f dn

where 0' is the element under consideration and 3Q' its boundary.

If the point (x,y) lies within the element, then for the small

circle around this point

f dn = -r.

For the remainder of the contour it does not matter whether the

point (x,y) lies inside or outside of the contour.

We introduce F-x = ', n-y = n'. Then one has

Let the contour between the points A End B in Fig. 6 be given by

,= a - r1,tgf3

where 3 is the angle between the inner normal to the boundary AP

and the x axis (Fig. 6.) Then one has to evaluate

71



dB' fBa - tglTn' dn

2a '2tg )+nl 2

A2' A

V' t m

w tm

The direction of integration is chosen in such a manner that

the interior is to the left as one travels along the contour. This

is an elementary integral.

B O-S -a sina) (d-"
a-tgari' Cos' = -sinCscosa c2

2 __naos f n, 7-722 2rA  (a-n 2+n, '.( -as-in ) +a c'os23

dii

J2

2 a cosB+cos2 8  f 2

A (- -asina)/acosa] +1
cosa

rB

sin cosa(1/2)log[( cos8 asina) 2 +a2 cos 2 a)

A
flrl
2 -a sine B

+cos 2 arctg osa3osa
SA

One has, either from Fig. 7 or by direct computation,

2 = 2 ,2 (____, 2 a2  28
r =' + = _os- a sin3) + 2 2

Cos- a sina

A= arctg acosa3

Thus, finally as the contribution of the boundary AB

-(1/2)u 2[-sina cos8 log rB +cos2 (BO - 0 ]
rA B A

We apply this result to several special cases.
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Let the point (x,y) lie in the middle of a square (Fig. 8a).

One then obtains

-(1/2)u 2 ff d~dn = 2 -7Tu[- +7] 02 2

The first factor comes from the contour around the point (x,y).

The second one from the contour AB and CD. Incidentally, one

sees that the exclusion of the point (x,y) by a square is

equivalent to the exclusion by a small circle.

For a narrow rectangle (extending in the y direction,

Fig. 8b) one obtains

(-1/2)u 2 f 1 ?T

2ddr - (-m + 2 )

If the point (x,y) approaches the contour AB, Fig. 8c, then

the contribution of the contour AB cancels the contribution of

the small circle. In this manner one can discuss the problem

and contours of different kind; for instance, the contribution

of an oblique contour.

One finds that the local contribution of the double integral

in Eq. (A47) will cancel the local contribution (-i/2)sin 2 u(x,y)

and also the local contributions of the second contour integral

(in which the Cauchy principal value is to be formed).

73



APPENDIX VII

RELATION BETWEEN THE SHOCK CONDITIONS EQS. (14)
AND (15) AND LOCAL EXPRESSIONS Q or Q

x y

It has already been shown in Appendix V that the shock con-

ditions (14) and (16) are satisfied if Qx (x,y) = 0 identically in

x and y. In this appendix it will be shown that if Qx = 0 or

Qy = 0 locally at points immediately upstream and downstream of

the shock then, respectively, Eq. (14) and a linear combination of

Eqs. (14) and (16) will be satisfied. In other words, if one uses

in the computation either conditions for Qx or Qy then one

relation derived from the two shock conditions is satisfied even

if Qx = 0 or Qy = 0 only at points immediately upstream and down-

stream of the shock.

This discussion is primarily of interest for the classical

use of the integral equation method. Accordingly, it suffices if

we restrict it to the specialized equations (25) and (26) although

the results have general validity. Let us first consider the

condition derived from Qx. We evaluate the expression (26) for

points (x,y) approaching the shock from the upstream and the down-

stream side along a line y = const. Let the point of the shock

reached in the limit be xs (y). A discontinuity in the expression

Qx can be caused by the terms 21u(x,y), -(7/2) u 2(x,y) and

-(1/2) ff u 2 ( ,)u ( -xq-y)ddn

As always the region Q is part of the C,n plane punctured at
( ,n) =(x,y). We enclose the point (x ,Y) by a small box (Fig. 9).

5

In the limiting processes where one approaches this point from the

upstream and downstream side the singular point (x,y) moves with-

in the box. We consider the limits of the double integral for

x = lim (xs-c) and x = lim (x s+C); C>0
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In this limiting process the contributions of the double integral

from outside of the box will be continuous as x moves through the

shock. Only the region within the box need to be considered. Let

£+ and Q- be the portions of Q within the box upstream and down-+

stream of the shock. Let u and u be the values of u upstream

and downstream of the shock. The difference of the double integral+

for the area £2 + - with x once approaching the shock from the
upstream side and a second time from the downstream side is given

by

D = Mf(u+) ,n)p (-xs(y)+E,n-y)d~dn
+

+ ff (u), C -sY)+ ,n-y)d~dn

2

- MCu () 2, ( ) (-xs (y)-c,rn-y)dddq
Q +

- M )2( CI, q) Y1 (-x s (y) -E , TI-Y) d~dqj

In evaluating the first and fourth of these integrals one must

take the presence of the singular points at x -,y and x +Ely

into account. One can take the box sufficiently small so that u+

and u can be considered as constant. (one can indeed, show that

higher order terms in the development of u do not contribute to

a discontinuity. Then the integration with respect to can be

carried out in the above integrals and one obtains only integrals

over the contour. The evaluation of the contours around the

singular points is familiar. One obtains

+ 2 -2-Tr(u+) and -n(u-) .

Therefore
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D = -1(u +  2 + (u+ ) 2 f p(_-xs (Y) +r -y)dn

+ (u-) 2 f ip(f-xs(y) +c,n-y)dn
3 Q

S(u + 2 f 0PF(I-x s (y) - c,n-y)dri

- u) 2 f '(F-x (Y)- E,n-y)drl + 7T(u-) 2

Here 30 + and aQ- denote the contours of the areas Q+ and Q, but

with the exclusion of the contours around the singular points.

These contours include the borders of the cut made along the shock.

At the outer boundaries of the regions Q + and 2- namely = xI ,

Yl < n < Y2 and = x2 ; yl < n < Y 2 (Fig. 9) one has obviously

lim 4EC-x (Y) + Cn-Y) = lim t (-x (Y)-C,n-y)
C 0 - 50

In the limit c-0 these parts of the contour do not contribute to

the difference D; only the integrals along the shock are left.

One observes that this integration is carried out in opposite direc-

tions for the contours 2 + and 3-, on the upstream side in the

direction of increasing q. One therefore obtains

+2_ 2 Y2
D [(u )2-(u )21{-T + f PF(-xs(y)+E,n-y)dn

Y1

Y2

- ]f p (C-xs (y)-c,n-y)di}
Yl
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One has

(-y (-x)

(F-x) 2 
2(n-y)

We set for the evaluation of the integrals

-xs (Y) 11--y = 3'

and for the limits of the integral

nI = yl-y , q; y2-y2

Notice that

I I

r)1  < 0 < 12

For the present purpose it suffices if one replaces the shock by

a straight line

=-n' tg

where (as in Section 2) P is the local angle between the downstream

pointing normal to the shock and the x axis. Then the first

of the above integral assumes the form

I I2 +' T 2 't n +
I= f + - dfl,= f -tg-n +c dn'' + (+) 2 +TI'2 , (-tgW +C) 2+n,2

We show the essential steps in the evaluation of this elementary

integral
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2-g~ ~ + ri, 2 C 2~O Co [ 2 -t0) 2+ 1]
Ecos f

Setting

2co tg3 v

one obtains

f2  2

v 1 l+v2

where the limits of the integral are given by

I I

V 1 =co 2 -tg andy-2 = os2- - tg

For c-0 E>O one has v 1 - o, V 2-'

The contribution of the first summand in the integrand of11
vanishes because of antisymmetry and one obtains

I=Cos TTi

The second integral in the expression D is treated in the same

manner, but . is replaced by -F-. Therefore v 1 = ~and v 2 =

one thus finds

D =(u +) - u) 2 (-iT + 2Tcos 23
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Forming the difference of the expressions for Qx' (Eq. 25) up-

stream and downstream of the shock in the limit c-0, one obtains

with the notation of Section 2

+ ~2 +27T[u] + 
- n/2[u2] - (1/2)D

2i[ul+ 
- [U1 +  (r/2 - 7/2 + 7cos2a)= 0

This is the condition Eq. (16).

An analogous procedure carried out in Eq. (26) requires the

evaluation of

-(1/2) ff u2(TI,) P (E-x,n-y)d~dn

After an integration with respect to one arrives again at

integrals around the contours Q + and 3Q-. No contribution due

to the singular point (x,y) appears. One arrives at

1 2 +[ ] T1 ( -Xs (y) +F, T-y) dn

r) 1

n2
- f n ( -Xs (y)-S,n-y)dn}

n1

Here

ni -

1P (C-xr-y) = 2(F-x) + (n-y)

In the integral one makes the same substitution as before. One

finally obtains from Eq. (26)

2 Iv]+ + [u2 ]+ sin- cosB = 0
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The conditions derived for, Q therefore lead to a linear combination
yof the shock conditions (14) and (16).

The full shock conditions are obtained only if simultaneously

Qx = 0 and Qy = 0 for points immediately upstream and downstream

of the shock. The application of only Qx = 0 or Qy = 0 yields

the full shock conditions only if the respective expression van-

ishes globally.
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APPENDIX VIII

DERIVATION PERTAINING TO EQUATIONS (35) AND (36)

The evaluation of the normal derivative of p in Eq. (35)

requires some caution because the singularity which arises in the

derivatives of as the point (x,y) approaches the contour Q.

Therefore, we show some details. Let s(s) be the angle of the

inner normal to the contour of the distant field with the x axis

(Fig. 5). In the contour integrals the variable s will be replaced

by an umbral variable a. We assume that s (and a) increase in

a direction of travel for which the distant field is to the left.

The contour is described by x = x(s) and y = (s). We define unit

vectors in the direction of the normal and in the tangential

directions.

en = e cos3 + e sine
n x y

et = ex sin8 - ey cos

Derivatives of in the direction of en and et are denoted by n

and

n xn(x(S) ,y(s)) = xCOSj3(S) + qxy sinS(a)

0t(x(s),y(s)) = #sin (s) - cosa(a)

We assume (x,y) to be fixed inside of the distant field Q, and

define derivatives n and t" The differentiations are then

carried out with respect to and n.

n (a,x,y) = pn(()-x'n(()-y)) =
(A49)

- (()-xfl(o)-y) cosM(O)+ 'p(ia)-x,n(a)-y)sin (a)

qt(o'xy) = sinB(a) - pcos 6(o).

(arguments of and ip as above).
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Then one has

'(~(J)-x, T (J) -y) =nsin (a) - i~Cos (oy)

Now from Eq. (34)

P (x,y)= (27r)- - (O Ea-,r(j-~d-f(~0 xnyd

+T'r(x,y)- sinO(x,y)J (A50)

'p (x,y) =(2rl- 1 -f f(o)'pr (C(aj)-x,n(a-y)da-ffq(E,n)'pT (E-x,ri-y)d~dn

-Fr(x,y)- 1cosO(x,y)] (A51)

with r 2 = + sinO(x,y)=y/r, cosO(x,y) =x/r.

The above expressions for ando p are substituted in the

integrals over Q. We form

'(x,y)pos (s) + 'pv(x,y)sin3(s)z42T)- {-ff(a)P (c,x,y)cos(f3(a)-13(s))dox n

-f f(a)'pt (a,x~y)sin (I(a-6(s))dc

-cosi3(s) ff Fn) Cx -ydn

-(F/r)sin( 3(s)-O(x,y))1

and
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-(2ui) t- - f f(a)ip (G,x,y)sin U3(s)- (a)da
Q n

-f f~a)I (a, x, y) (-cos ( (s) - (c)) da

-sine(s) ff q(Cn) (-x,n-y)d~dn

+ cos P(s) ff q( ,n)4'9 (C-x,n-y)dtdq

- (F/r)cos( Is) -O(x,y))}

Now one carries out in the last formulae the limiting process

where (x,y) approaches a point of the contour (x(s),y(s)). The

results are denoted by n (s) and t(S

c~(s)=(f(s)/2)+(2rr) {- / f(G)q (a,(x(s),y(s)) cos( (a)-6(s)du

-f f(G)O t(a,x(s),y(s)) sin(O()-3(s))da
DQ (A5 2)

-cos (s)ffqU ,n)tpF U-x(s),n-y(s))d~dn

-sin6(s) ff q( ,n)tp T ( -x(s), n-y(s))d~dij

-(Fir) sinU3(s) - O(x(s),y(s))}

t()=(2Trf) I-f f(o3)q (o,x(s),y(s))sin (IGc)- (s))daiI

(A53)

*+ f f(G) *t (o,x(s),y(s))CosU(o()-63(s))do

(Continued on next page.)
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+ cos$(o)ff q(F,n) n ( -x,n-y)d~dn

(F/r) cos ((s) - 0(x) (a) , y(S))

The present representation of n(s) and qt(s), which uses q) and

q may appear less direct than a representation in - and 4q but

it shows more clearly the limiting form of the equations. if

the point (E(a),n(a))approaches the point (x(s),y(s)) (in other-1
words, as a approaches s). The derivative q behaves as (a-s);

integrals containing it must be evaluated in the sense of Cauchy

principal values (unless there is another factor in the integrand

which tends to zero in the same manner). Furthermore,

lim {n n (a,x(s),y(s))= -(2dr(s)/ds)-
1

n

(One will remember that s increases in a direction in which one has

the distant field to the left. dB/ds is positive if the distant

field is convex at the point s.)

If one evaluates the double integrals in the form used in

Eq. (35) then it does not matter whether the plane Q is punctured

or not. If, however, one transforms it by integrations by part2.
so that the derivatives of u in q vanishes, then one must remember

that one deals with the punctured plane in the limit where the

singular point approaches the boundary from the inside of the

distant field.

ffq(F,ri) (F-x,n-y~ddn= (I/2)ff 3-(u 2 (F )) (E-x n-y)d~dn

- (L,'2) f u 2 F,) (U-x,n-y)dn- (1/2)ffu 2 ( ,n)$(E-x,n-y)d~dni

2 2
S-(7r/4)u (x,y) + (1/2) f u ((a)) (G) ((o)-x,Ti(a)-y)dn ()

3 0 2

- (1/2) ff u2(n)F( -x,-y)ddnr

lim x~x(s)
y-y (s)

We have found above

84

A -



4Uj(()-xn(O)-y) ='PnCO + tsin(o)

and dn/do =-cosR(o). Then

(1/2)f u
2

(1/2) f u2 (,(0) ,ri(o) (Tj,x, V)Cos (o)

22

+ qt(u, x,y) sinP.(7) (-cos, ()) = -(i/4) cos 2 (s)u 2(x(s),v(s))

-(1/2) f u2 (. (), ())] ,'(a,x(s),y 2s)) + ;()+ t(o ,x (s) ,y (s) sin e (:) cos (o) Id,

The portion of the integral involving qt is evaluated as Cauchy

principal value. For the evaluation of the double integral, see

Appendix VI.

In a corresponding manner one obtains

ffq(rq) ( F,- x ' n - y ) d d n = 1 f f- u2 ( ' ) (F-x'n-y)d2dn

1f u u(,) ( -x, n-y)d,, -(1/2)ff u2(',q))n(C-x, -y)ddq

12 2 (r'n) s i n ( O) -4t cosf(a)) (-cos3(a))da

- (1/2)ff u2 (I,I) j ( -xF-y)ddq'

+(r/4)u (x(s) ,y(s))sin (s)cos (s)

+ f U2 ((0) , T) ) ) (a) x ( ) , y (s) s) sin () cos6 (a)

2S+ I t  (x s) , v(S) (os 2 1 (o) ]dc

-(1/2)U2 u2 n), r (F-x (s),n-y (s))d ,dn

limx-x (s)
y=y (s)
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In practice one will use a contour 22 which consists of

straight lines oriented in the x anu y directions and considerable

simplifications will be encountered, because c'osS and sin 3 will

then be either zero or one.

r
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SHOCK, x x s(Y)

Figure 1. Region 02 in the Vicinity of a Shock.
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SHOCK i'

17=Y2"-
(xsly) +fr

l?:yy

/ (Xs(y -, //

o.C

Figure 3. Notation Used in Demonstrating the
Continuity of Q as the Point (x,y)
Passes Through a Shock.
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n2 2

. / /
/ C1

'/ / y

Figure 4. Coordinate Systems Used for the Differentiation
of a Double Integral.

st/

xc
Figure 5. Limiting Case Where a Point (x,y) of the Interior

Approaches a Point (xcY c  of the Contour.

A D

'1' 7
y, ,

BC

x,C

Figure 6. Notation for the Evaluation of a Double Integral.
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A'1

'A

Figure 7. Geometric Interpretation of r A and 60.

C B C B

0 O1, Y~t 0 tt
D A D A

Figure 8. Different Cases in the Evaluation of a
Double Integral.

K1  K 2

Xs+

Figure 9. Discussion of Certain Shock Conditions.
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\T4 M<

Figure 10. Combination of Finite Difference and Integral
Equation Methods.
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MODERAELY DISTANT
FVERY DISTANT FIELD

(SOURCES PERMITTED) NO SOURCES

I (x'YjI_-..,.

Figure 11. Derivation of Conditions Along a if Sources
are Present in the Moderately Disiant Field.
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